Suppr超能文献

高维亚组回归分析

High-dimensional Subgroup Regression Analysis.

作者信息

Jiang Fei, Tian Lu, Kang Jian, Li Lexin

机构信息

University of California at San Francesco, Stanford University.

University of Michigan, University of California at Berkeley.

出版信息

Stat Sin. 2025 Jul;35(3):1713-1736. doi: 10.5705/ss.202023.0075.

Abstract

Classical regression generally assumes that all subjects follow a common model with the same set of parameters. With ever advancing capabilities of modern technologies to collect more subjects and more covariates, it has become increasingly common that there exist subgroups of subjects, and each group follows a different regression model with a different set of parameters. In this article, we propose a new approach for subgroup analysis in regression modeling. Specifically, we model the relation between a response and a set of primary predictors, while we explicitly model the heterogenous association given another set of auxiliary predictors, through the interaction between the primary and auxiliary variables. We introduce penalties to induce the sparsity and group structures within the regression coefficients, and to achieve simultaneous feature selection for both primary predictors that are significantly associated with the response, as well as the auxiliary predictors that define the subgroups. We establish the asymptotic guarantees in terms of parameter estimation consistency and cluster estimation consistency. We illustrate our method with an analysis of the functional magnetic resonance imaging data from the Adolescent Brain Cognitive Development Study.

摘要

经典回归通常假设所有受试者都遵循具有相同参数集的共同模型。随着现代技术收集更多受试者和更多协变量的能力不断提高,存在受试者亚组的情况越来越普遍,并且每个组遵循具有不同参数集的不同回归模型。在本文中,我们提出了一种回归建模中亚组分析的新方法。具体来说,我们对响应变量与一组主要预测变量之间的关系进行建模,同时通过主要变量和辅助变量之间的相互作用,明确地对给定另一组辅助预测变量的异质关联进行建模。我们引入惩罚项以诱导回归系数中的稀疏性和组结构,并实现与响应显著相关的主要预测变量以及定义亚组的辅助预测变量的同时特征选择。我们在参数估计一致性和聚类估计一致性方面建立了渐近保证。我们通过对青少年大脑认知发展研究的功能磁共振成像数据进行分析来说明我们的方法。

相似文献

1
High-dimensional Subgroup Regression Analysis.高维亚组回归分析
Stat Sin. 2025 Jul;35(3):1713-1736. doi: 10.5705/ss.202023.0075.
9
Incentives for preventing smoking in children and adolescents.预防儿童和青少年吸烟的激励措施。
Cochrane Database Syst Rev. 2017 Jun 6;6(6):CD008645. doi: 10.1002/14651858.CD008645.pub3.

本文引用的文献

1
A Pliable Lasso.一个可弯曲的套索。
J Comput Graph Stat. 2020;29(1):215-225. doi: 10.1080/10618600.2019.1648271. Epub 2020 Sep 5.
2
Subgroup analysis in the heterogeneous Cox model.异质性Cox模型中的亚组分析。
Stat Med. 2021 Feb 10;40(3):739-757. doi: 10.1002/sim.8800. Epub 2020 Nov 9.
3
Poststratification fusion learning in longitudinal data analysis.纵向数据分析中的事后分层融合学习
Biometrics. 2021 Sep;77(3):914-928. doi: 10.1111/biom.13333. Epub 2020 Jul 28.
4
Exploration of Heterogeneous Treatment Effects via Concave Fusion.通过凹融合探索异质性治疗效果
Int J Biostat. 2019 Sep 20;16(1):ijb-2018-0026. doi: 10.1515/ijb-2018-0026.
5
Prediction of neurocognition in youth from resting state fMRI.基于静息态功能磁共振成像预测青少年的神经认知情况
Mol Psychiatry. 2020 Dec;25(12):3413-3421. doi: 10.1038/s41380-019-0481-6. Epub 2019 Aug 19.
9
Change-Plane Analysis for Subgroup Detection and Sample Size Calculation.用于亚组检测和样本量计算的变平面分析
J Am Stat Assoc. 2017;112(518):769-778. doi: 10.1080/01621459.2016.1166115. Epub 2017 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验