Samu Angelika A, Horváth Dániel, Endrődi Balázs, Vidács László, Janáky Csaba
Department of Physical Chemistry and Materials Science, University of Szeged, Aradi sq. 1, Szeged 6720, Hungary.
eChemicles Zrt, Alsó Kikötő sor 11, Szeged 6726, Hungary.
ACS Energy Lett. 2025 Jul 17;10(8):3845-3850. doi: 10.1021/acsenergylett.5c01133. eCollection 2025 Aug 8.
While the number of reports on the electrochemical carbon dioxide reduction increases at an ever-accelerating rate, achieving long-term stable, selective, and energy efficient operation is still challenging. This can be attributed mostly to the short length of lab-scale measurements and the complexity of cell operation parameters. Here we introduce a high-throughput cell operation testing methodology, including data evaluation and process optimization by machine learning algorithms. An autonomously operating test station allowed collection of enough data to develop an artificial neural network model. When the model is trained on a fraction of a large data set, predictions for the operation of the same cell under different conditions are very precise. Accurate predictions can also be made for newly assembled cells and at parameter settings outside of the training parameter space. Our results pave the way for the long-term stable operation of CO electrolyzers by the adaptive optimization of the process conditions based on machine-learning-based holistic data evaluation.
虽然关于电化学二氧化碳还原的报告数量正以不断加速的速度增加,但要实现长期稳定、选择性高且能源高效的运行仍具有挑战性。这主要可归因于实验室规模测量的时长较短以及电池操作参数的复杂性。在此,我们引入一种高通量电池操作测试方法,包括通过机器学习算法进行数据评估和工艺优化。一个自主运行的测试站能够收集足够的数据来开发人工神经网络模型。当该模型在大数据集的一部分上进行训练时,对于同一电池在不同条件下的运行预测非常精确。对于新组装的电池以及在训练参数空间之外的参数设置,也能够做出准确的预测。我们的研究结果为基于机器学习的整体数据评估对工艺条件进行自适应优化从而实现CO电解槽的长期稳定运行铺平了道路。