Suppr超能文献

源自高分辨率计算机断层扫描(HRCT)的影像组学能够预测特发性肺纤维化急性加重患者的死亡率。

Radiomics derived from HRCT can predict mortality in patients with acute exacerbation of idiopathic pulmonary fibrosis.

作者信息

Pang Xueting, Cheng Li, Huang Linyan, He Wenzhang, Liu Shengmei, Wang Yinqiu, Zheng Jierui, Peng Liqing, Yang Ting

机构信息

Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.

Department of Radiology, West China (Airport) Hospital Yixin Branch, Sichuan University, Chengdu, China.

出版信息

J Thorac Dis. 2025 Jul 31;17(7):4990-5001. doi: 10.21037/jtd-2025-194. Epub 2025 Jul 25.

Abstract

BACKGROUND

There is a dismal prognosis for idiopathic pulmonary fibrosis (IPF), a progressive interstitial lung disease. During acute exacerbations, the survival outcomes are significantly worse. This study aimed to evaluate the efficacy of high-resolution computed tomography (HRCT)-based radiomics in predicting mortality in patients experiencing acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF).

METHODS

From April 2012 to February 2023, 146 AE-IPF patients were retrospectively enrolled at West China Hospital of Sichuan University and divided at random in a 7:3 ratio between a training set (n=102) and an inside validation set (n=44). Chest HRCT was used to obtain radiomics characteristics. A nomogram that combined the radiomics risk score with specific clinical characteristics was produced by logistic regression classifiers, which also generated radiomics and clinical models. The C-index, area under the receiver operating characteristic curves, and decision curves were used to evaluate the predictive performance of the models. The nomogram-derived risk score was used to categorize patients into high-risk and low-risk categories for the training and validation datasets. The log-rank test and Kaplan-Meier curves were utilized in survival analysis.

RESULTS

All-cause mortality occurred in 72.6% of patients over a median follow-up of 17 months. The nomogram predicted 1-year overall survival (OS) with the area under the curve (AUC) of 0.739 and 0.717 for the training and validation datasets, respectively. The nomogram surpassed both clinical and radiomics models in predicting 3-year OS, with higher AUC values in training and validation datasets (0.789 . 0.750). High-risk patients had noticeably shorter OS than low-risk patients in both datasets [hazard ratio (HR) =2.958, 95% confidence interval (CI): 1.833-4.744, log-rank P<0.001; HR =2.547, 95% CI: 1.255-5.171, P=0.01].

CONCLUSIONS

The radiomics-based nomogram can predict the mortality of patients with AE-IPF.

摘要

背景

特发性肺纤维化(IPF)是一种进行性间质性肺病,预后不佳。在急性加重期,生存结局明显更差。本研究旨在评估基于高分辨率计算机断层扫描(HRCT)的放射组学在预测特发性肺纤维化急性加重(AE-IPF)患者死亡率方面的疗效。

方法

2012年4月至2023年2月,四川大学华西医院对146例AE-IPF患者进行回顾性纳入,并按7:3的比例随机分为训练集(n = 102)和内部验证集(n = 44)。采用胸部HRCT获取放射组学特征。通过逻辑回归分类器生成结合放射组学风险评分和特定临床特征的列线图,同时生成放射组学和临床模型。使用C指数、受试者操作特征曲线下面积和决策曲线来评估模型的预测性能。基于列线图得出的风险评分用于将训练和验证数据集的患者分为高风险和低风险类别。生存分析采用对数秩检验和Kaplan-Meier曲线。

结果

在中位随访17个月期间,72.6%的患者发生全因死亡。列线图预测训练集和验证数据集的1年总生存率(OS),曲线下面积(AUC)分别为0.739和0.717。在预测3年OS方面,列线图优于临床和放射组学模型,训练集和验证数据集的AUC值更高(0.789、0.750)。在两个数据集中,高风险患者的OS明显短于低风险患者[风险比(HR)= 2.958,95%置信区间(CI):1.8

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c1d/12340315/4df87fb07a38/jtd-17-07-4990-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验