Grismer L Lee
Herpetology Laboratory, Department of Biology, La Sierra University, 4500 Riverwalk Parkway, Riverside, California 92505, USA La Sierra University Riverside United States of America.
Department of Herpetology, San Diego Natural History Museum, PO Box 121390, San Diego, California, 92112, USA San Diego Natural History Museum San Diego United States of America.
Zookeys. 2025 Aug 4;1248:93-109. doi: 10.3897/zookeys.1248.159516. eCollection 2025.
Multiple factor analysis (MFA) is introduced as a diagnostic tool for taxonomy and discussed using examples from the herpetological literature. Its methodology and output are compared and contrasted to the more often used principal component analysis (PCA). The most significant difference between MFA and PCA is that the former can more appropriately integrate numeric (meristic and/or morphometric) and categorical characters (e.g., big-small, blue-red, striped-banded, keeled-smooth, etc.) in the analysis, thus creating a nearly total-evidence morphological output. MFA emphasizes the diagnostic utility of categorical characters in a statistically defensible landscape as opposed to their often-anecdotal treatment or complete omission in species diagnoses, usually owing to their variability. PCA is most informative when only a single numeric data type (e.g., morphometric or meristic) is analyzed. Using PCA to analyze different data types separately and comparing the results, one can determine which data type and which of their variables (traits/characters) bear most heavily on the differentiation among the operational taxonomic units (OTUs [i.e., populations or species]) and, in some cases, their biological significance. If more than one data type is used in a PCA, the output may be biased by the data type with the largest amount of variation or statistical variance. Also discussed is the necessity of using a non-parametric permutation of analysis of variance (PERMANOVA)-or a similar analysis-as a robust, statistically defensible method for assessing the significance of OTU plot positions as opposed to subjective visual interpretations.
多因素分析(MFA)作为一种分类学诊断工具被引入,并通过爬虫学文献中的例子进行讨论。将其方法和输出与更常用的主成分分析(PCA)进行了比较和对比。MFA和PCA之间最显著的差异在于,前者在分析中能够更恰当地整合数值(可数和/或形态测量)和分类特征(例如,大-小、蓝-红、条纹-带状、有棱-光滑等),从而产生几乎完全基于证据的形态学输出。MFA强调分类特征在统计学上合理的框架中的诊断效用,这与它们在物种诊断中经常被轶事处理或完全忽略形成对比,通常是由于它们的变异性。当仅分析单一数值数据类型(例如,形态测量或可数)时,PCA提供的信息最多。使用PCA分别分析不同的数据类型并比较结果,可以确定哪种数据类型及其哪些变量(性状/特征)对操作分类单元(OTU[即种群或物种])之间的差异影响最大,并且在某些情况下,还能确定它们的生物学意义。如果在PCA中使用了不止一种数据类型,输出结果可能会受到具有最大变异量或统计方差的数据类型的影响。还讨论了使用非参数置换方差分析(PERMANOVA)或类似分析作为一种稳健的、统计学上合理的方法来评估OTU图位置的显著性的必要性,以取代主观的视觉解释。