Suppr超能文献

基于机器学习的用于淋巴瘤细胞分类的电化学辅助散射成像系统

Electrochemical-assisted scattering imaging system for lymphoma cell classification using machine learning.

作者信息

Xie Linyan, Zhang Ning, Yang Kai, Wang Mengfei, Wei Xiangyu, Ren Qiongqiong

机构信息

School of Medical Engineering and School of Mathematical Medicine, Xinxiang Medical University, Xinxiang 453003, China.

Henan Engineering Technology Research Center of Neural Sensing and Control, Xinxiang 453003, China.

出版信息

Biomed Opt Express. 2025 Jul 29;16(8):3424-3436. doi: 10.1364/BOE.569911. eCollection 2025 Aug 1.

Abstract

Lymphoma is one of the most common malignancies globally, making early diagnosis crucial for improving survival. This study introduces an electrochemical-assisted scattering imaging system (ESIS) for lymphoma cell classification. The system integrates scattering imaging with electrochemical measurements, using a fiber-optic probe for scattering excitation and a 3D rGO-TiC-MWCNTs composite electrode to simultaneously monitor HO release. Data from these modalities are combined with an SVM algorithm, improving classification performance significantly, with the AUC for HMy2.CIR cells increased from 0.79 to 0.97. The dual-modality approach achieved 90% accuracy, outperforming scattering imaging alone. This method enhances lymphoma subtype differentiation and shows promise for personalized cancer therapies.

摘要

淋巴瘤是全球最常见的恶性肿瘤之一,因此早期诊断对于提高生存率至关重要。本研究介绍了一种用于淋巴瘤细胞分类的电化学辅助散射成像系统(ESIS)。该系统将散射成像与电化学测量相结合,使用光纤探头进行散射激发,并使用3D rGO-TiC-MWCNTs复合电极同时监测HO释放。这些模态的数据与支持向量机(SVM)算法相结合,显著提高了分类性能,HMy2.CIR细胞的曲线下面积(AUC)从0.79提高到了0.97。这种双模态方法的准确率达到了90%,优于单独的散射成像。该方法增强了淋巴瘤亚型的区分能力,并显示出在个性化癌症治疗方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e39e/12339310/868142d19ada/boe-16-8-3424-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验