Suppr超能文献

可解释人工智能(XAI)驱动的计算机辅助检测(CAD)系统在健康检查胸部X光异常中的应用。

Utilization of Explainable Artificial Intelligence (XAI)-Powered Computer-Aided Detection (CAD) System on Chest X-Ray Abnormalities in Health Check-Ups.

作者信息

Nishii Shizuka, Tomita Katsuyuki, Touge Hirokazu, Yamamoto Hiroyuki, Shigeshiro Keiji, Yamasaki Akira

机构信息

Department of Respiratory Medicine, Hakuai Hospital, Yonago 683-0853, Japan.

Department of Respiratory Medicine, NHO Yonago Medical Center, Yonago 683-0006, Japan.

出版信息

Yonago Acta Med. 2025 Jul 23;68(3):180-186. doi: 10.33160/yam.2025.08.002. eCollection 2025 Aug.

Abstract

BACKGROUND

We designed a single-center retrospective study comparing the performance of commercially explainable artificial intelligence (XAI)-powered computer-aided detection (CAD) system of abnormal findings on chest X-rays (CXR) with that of non-experts, and pulmonology experts.

METHODS

A total of 1,262 images of 1,262 subjects (mean age 49 years; 52% female) and 1,252 images of 1,252 subjects (mean age 51 years; 51% female) were obtained from DICOM formats in Hakuai Hospital Health Check-up Center, in the pre-and post-implementing XAI-powered CAD period, respectively. The ultimate decision of abnormality on CXR was made by two pulmonology experts. The diagnostic accuracy metrics were measured accuracy and negative predictive value (NPV) for detecting abnormality on CXR.

RESULTS

XAI-powered CAD systems achieved an accuracy of 0.84 (95% confidential interval [CI] 0.82-0.86) and NPV of 1.00 (95% CI 0.99-1.00) to detect the abnormality on CXR. For determining nodular shadows, it was found to be non-inferior to the pulmonology experts with an accuracy of 0.94 (95% CI 0.92-0.95), and NPV of 1.00 (95% CI 0.99-1.00). It tended to overestimate the abnormality of heart enlargement and pleural thickening with a tendency for lower sensitivity.

CONCLUSION

It seems likely that in the future, the most accurate screening CXR will be a double check combining with the pulmonology experts with XAI-powered CAD systems.

摘要

背景

我们设计了一项单中心回顾性研究,比较了商业化的可解释人工智能(XAI)驱动的胸部X光(CXR)异常发现计算机辅助检测(CAD)系统与非专家及肺病专家的表现。

方法

分别在引入XAI驱动的CAD系统之前和之后,从白怀医院健康检查中心的DICOM格式中获取了1262名受试者的1262张图像(平均年龄49岁;52%为女性)和1252名受试者的1252张图像(平均年龄51岁;51%为女性)。CXR异常的最终判定由两名肺病专家做出。测量了诊断准确性指标,即检测CXR异常的准确率和阴性预测值(NPV)。

结果

XAI驱动的CAD系统检测CXR异常的准确率为0.84(95%置信区间[CI]0.82 - 0.86),NPV为1.00(95%CI 0.99 - 1.00)。对于确定结节阴影,发现其不劣于肺病专家,准确率为0.94(95%CI 0.92 - 0.95),NPV为1.00(95%CI 0.99 - 1.00)。它倾向于高估心脏扩大和胸膜增厚的异常情况,且敏感性有降低趋势。

结论

未来,最准确的CXR筛查可能是将肺病专家与XAI驱动的CAD系统相结合的双重检查。

相似文献

3
Symptom- and chest-radiography screening for active pulmonary tuberculosis in HIV-negative adults and adults with unknown HIV status.
Cochrane Database Syst Rev. 2022 Mar 23;3(3):CD010890. doi: 10.1002/14651858.CD010890.pub2.
4
A systematic review and meta-analysis of artificial intelligence software for tuberculosis diagnosis using chest X-ray imaging.
J Thorac Dis. 2025 May 30;17(5):3223-3237. doi: 10.21037/jtd-2025-604. Epub 2025 May 27.
6
Artificial intelligence for diagnosing exudative age-related macular degeneration.
Cochrane Database Syst Rev. 2024 Oct 17;10(10):CD015522. doi: 10.1002/14651858.CD015522.pub2.
7
Artificial intelligence for detecting keratoconus.
Cochrane Database Syst Rev. 2023 Nov 15;11(11):CD014911. doi: 10.1002/14651858.CD014911.pub2.
8
Novel Artificial Intelligence-Driven Infant Meningitis Screening From High-Resolution Ultrasound Imaging.
Ultrasound Med Biol. 2025 Jun 28. doi: 10.1016/j.ultrasmedbio.2025.04.009.
10
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.

本文引用的文献

1
How human-AI feedback loops alter human perceptual, emotional and social judgements.
Nat Hum Behav. 2025 Feb;9(2):345-359. doi: 10.1038/s41562-024-02077-2. Epub 2024 Dec 18.
3
Commonly Missed Findings on Chest Radiographs: Causes and Consequences.
Chest. 2023 Mar;163(3):650-661. doi: 10.1016/j.chest.2022.10.039. Epub 2022 Dec 12.
4
Reducing Errors Resulting From Commonly Missed Chest Radiography Findings.
Chest. 2023 Mar;163(3):634-649. doi: 10.1016/j.chest.2022.12.003. Epub 2022 Dec 10.
5
Lung Cancer in Japan.
J Thorac Oncol. 2022 Mar;17(3):353-361. doi: 10.1016/j.jtho.2021.11.020.
7
Screening for Lung Cancer: US Preventive Services Task Force Recommendation Statement.
JAMA. 2021 Mar 9;325(10):962-970. doi: 10.1001/jama.2021.1117.
8
Validation of a Deep Learning Algorithm for the Detection of Malignant Pulmonary Nodules in Chest Radiographs.
JAMA Netw Open. 2020 Sep 1;3(9):e2017135. doi: 10.1001/jamanetworkopen.2020.17135.
9
Portable chest X-ray in coronavirus disease-19 (COVID-19): A pictorial review.
Clin Imaging. 2020 Aug;64:35-42. doi: 10.1016/j.clinimag.2020.04.001. Epub 2020 Apr 8.
10
The routine pre-employment screening chest radiograph: Should it be routine?
Indian J Radiol Imaging. 2016 Jul-Sep;26(3):402-404. doi: 10.4103/0971-3026.190409.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验