Suppr超能文献

使用K折集成机器学习模型评估优化生物燃料产量百分比以实现可持续未来。

An assessment of optimizing biofuel yield percentage using K-fold integrated machine learning models for a sustainable future.

作者信息

Ramalingam Krishnamoorthy, Abdullah Mohd Zulkifly, Elumalai Perumal Venkatesan, Sangeetha Allam, Yong Xu, Hasan Nasim, Shangzhi Wei

机构信息

School of Mechanical Engineering, Engineering campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia.

Department of Sustainable Energy Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, India.

出版信息

PLoS One. 2025 Aug 14;20(8):e0328880. doi: 10.1371/journal.pone.0328880. eCollection 2025.

Abstract

Accelerating population and modernization has triggered a steady rise in energy demand and a significant rise in household waste, particularly municipal solid waste. In this context, waste-to-energy conversion has emerged as a sustainable solution. This study aims to maximize biofuel production yield using biomass-based banana peel catalyst waste by optimizing process parameters through machine learning models integrated with k-fold cross-validation. The models employed include Polynomial Regression (PR), Decision Tree (DT), Random Forest (RF), and Linear Regression (LR). The three key input variables including reaction temperature (RT), catalyst concentration (CC), and methanol-to-oil molar ratio (MOR) were used to train and test the models, with biodiesel yield as the measured output. Among the models, PR emerged as the best-performing one for predicting biofuel yield, demonstrated by its high R² value of 0.956 and low error metrics (RMSE = 1.54 MSE = 2.39 MAE = 1.43). The best model was determined through balancing bias and variance across k-fold validation iterations, where PR exhibited the highest average R² value of 0.868. Furthermore, the optimized process parameters predicted by PR for maximum biofuel yield were a RT of 59°C, CC of 2.96%, and a MOR of 9.21, resulting in a yield of 95.38%. These findings contribute to advancing large-scale machine learning-driven biofuel optimization, supporting industrial waste-to-energy applications, and fostering sustainable energy development.

摘要

人口增长加速和现代化进程引发了能源需求的稳步上升以及家庭垃圾尤其是城市固体垃圾的显著增加。在此背景下,垃圾转化为能源已成为一种可持续的解决方案。本研究旨在通过与k折交叉验证相结合的机器学习模型优化工艺参数,以最大限度地提高基于生物质的香蕉皮催化剂废料的生物燃料产量。所采用的模型包括多项式回归(PR)、决策树(DT)、随机森林(RF)和线性回归(LR)。使用反应温度(RT)、催化剂浓度(CC)和甲醇与油的摩尔比(MOR)这三个关键输入变量来训练和测试模型,以生物柴油产量作为测量输出。在这些模型中,PR在预测生物燃料产量方面表现最佳,其高R²值为0.956且误差指标较低(RMSE = 1.54,MSE = 2.39,MAE = 1.43)。通过在k折验证迭代中平衡偏差和方差确定了最佳模型,其中PR的平均R²值最高,为0.868。此外,PR预测的最大生物燃料产量的优化工艺参数为反应温度59°C、催化剂浓度2.96%和甲醇与油的摩尔比9.21,产量为95.38%。这些发现有助于推动大规模机器学习驱动的生物燃料优化,支持工业垃圾转化为能源的应用,并促进可持续能源发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca87/12352673/505900f575b5/pone.0328880.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验