Suppr超能文献

锰氧化物纳米酶作为自闭症谱系障碍的潜在治疗剂:行为和分子研究的见解

MnO nanozymes as potential therapeutic agents for autism spectrum disorder: insights from behavioral and molecular studies.

作者信息

Li Minghui, Wang Song, Chang Lingling, Chen Ruiting, Liu Yuhang, Ye Zhengjie, Zhao Yuhang, Ma YiFan, Yang Jing, Gan Xinyu, Zhuang Yongzhi, Wang Peng

机构信息

Department of Pharmaceutics, Harbin Medical University, Heilongjiang 163319, China.

Experimental Center of Traditional Chinese Medicine, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China.

出版信息

Nanoscale. 2025 Aug 28;17(34):19681-19694. doi: 10.1039/d5nr01142f.

Abstract

: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder of uncertain etiology. Current studies suggest that ASD progression is closely linked to an imbalance between oxidative stress and antioxidant capacity, marked by elevated levels of reactive oxygen species (ROS) and reduced concentrations of antioxidant molecules such as superoxide dismutase (SOD) and glutathione (GSH). Although the human body does possess endogenous ROS-scavenging enzymes, their sensitivity to environmental conditions and the difficulties of large-scale production limit their practical application. Consequently, substantial efforts have been dedicated in recent years to developing artificial enzymes with ROS-scavenging activity. Among these, ROS-scavenging nanozymes have been widely used due to their enhanced stability and multifunctionality. Notably, only a few manganese-containing nanozymes have been reported to exhibit effective reactive oxygen species (ROS) scavenging activity thus far. : In this study, we utilized MnO nanozymes (MnO NZs) exhibiting superoxide dismutase, catalase, and hydroxyl radical-scavenging activities. We assessed brain injury, as well as the antioxidative and anti-inflammatory effects of MnO NZs through behavioral tests, Nissl staining, immunofluorescence assays, and a laser speckle imaging system. Furthermore, we explored the underlying mechanisms of MnO NZs by employing ELISA kits, oxidative stress detection kits, and immunofluorescence analysis. : The results demonstrated that MnO NZs increase cerebral blood flow and effectively ameliorate ischemic and hypoxic conditions in BTBR mice. Moreover, they improve social deficits, repetitive stereotyped behaviors, cognitive impairment, and neuronal morphological damage. Further experiments confirmed that MnO NZs exert neuroprotective effects in BTBR mice by mitigating oxidative stress and inflammation. : These findings indicate that MnO NZs exhibit excellent antioxidant and anti-inflammatory effects and effectively enhance cerebral blood flow, ameliorate behavioral deficits, and alleviate neuronal damage in BTBR mice . Collectively, our results suggest that MnO NZs exert neuroprotective effects in the hippocampus of BTBR mice by reducing oxidative stress, mitigating neuroinflammation, and rescuing neuronal injury. Consequently, they hold promise as a potential nanomaterial for the treatment of autism.

摘要

自闭症谱系障碍(ASD)是一种病因不明的复杂神经发育障碍。目前的研究表明,ASD的进展与氧化应激和抗氧化能力之间的失衡密切相关,其特征是活性氧(ROS)水平升高,以及超氧化物歧化酶(SOD)和谷胱甘肽(GSH)等抗氧化分子浓度降低。尽管人体确实拥有内源性ROS清除酶,但其对环境条件的敏感性以及大规模生产的困难限制了它们的实际应用。因此,近年来人们致力于开发具有ROS清除活性的人工酶。其中,ROS清除纳米酶因其增强的稳定性和多功能性而被广泛使用。值得注意的是,迄今为止,只有少数含锰纳米酶被报道具有有效的活性氧(ROS)清除活性。

在本研究中,我们使用了具有超氧化物歧化酶、过氧化氢酶和羟基自由基清除活性的MnO纳米酶(MnO NZs)。我们通过行为测试、尼氏染色、免疫荧光分析和激光散斑成像系统评估了脑损伤以及MnO NZs的抗氧化和抗炎作用。此外,我们通过使用ELISA试剂盒、氧化应激检测试剂盒和免疫荧光分析探索了MnO NZs的潜在机制。

结果表明,MnO NZs增加脑血流量,并有效改善BTBR小鼠的缺血和缺氧状况。此外,它们改善了社交缺陷、重复刻板行为、认知障碍和神经元形态损伤。进一步的实验证实,MnO NZs通过减轻氧化应激和炎症在BTBR小鼠中发挥神经保护作用。

这些发现表明,MnO NZs具有优异的抗氧化和抗炎作用,并有效增加脑血流量,改善行为缺陷,减轻BTBR小鼠的神经元损伤。总体而言,我们的结果表明,MnO NZs通过降低氧化应激、减轻神经炎症和挽救神经元损伤,在BTBR小鼠的海马体中发挥神经保护作用。因此,它们有望成为治疗自闭症的潜在纳米材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验