Suppr超能文献

用于自动路面病害分析与退化趋势预测的大规模图像库

A Large-Scale Image Repository for Automated Pavement Distress Analysis and Degradation Trend Prediction.

作者信息

Yang Hanlin, Cao Jinpu, Wan Jun, Gao Qian, Liu Chenglong, Fischer Martin, Du Yuchuan, Li Yishun, Jain Pooja

机构信息

Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, 4800 Cao'an Road, Shanghai, 201804, P. R. of China.

Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, 94305, USA.

出版信息

Sci Data. 2025 Aug 14;12(1):1426. doi: 10.1038/s41597-025-05748-5.

Abstract

In recent years, automated detection technologies for large-scale pavement distress have become a focal point of research in the transportation sector. With the rapid advancement of deep learning technologies, data-driven artificial intelligence recognition algorithms have gradually emerged as the industry mainstream. The effectiveness of such algorithms largely depends on the reliability and quantity of the samples. However, existing datasets exhibit significant shortcomings in terms of sample size, category diversity, and support for distress tracking. In this study, a large-scale image dataset was meticulously constructed. This dataset includes 51012 road images for pavement distress identification and 8928 images for long-term tracking of pavement distress. Using this dataset, six mature object detection algorithms were trained and evaluated, with the results demonstrating the performance of these algorithms. To the best of our knowledge, this is the first large-scale pavement distress dataset that includes long-term tracking of pavement distress, providing reliable data support for dynamic tracking and monitoring of pavement distress as well as for optimizing road maintenance strategies.

摘要

近年来,大规模路面病害自动检测技术已成为交通运输领域的研究热点。随着深度学习技术的快速发展,数据驱动的人工智能识别算法逐渐成为行业主流。此类算法的有效性在很大程度上取决于样本的可靠性和数量。然而,现有数据集在样本大小、类别多样性以及对病害跟踪的支持方面存在显著不足。在本研究中,精心构建了一个大规模图像数据集。该数据集包括51012张用于路面病害识别的道路图像和8928张用于路面病害长期跟踪的图像。利用该数据集,对六种成熟的目标检测算法进行了训练和评估,结果展示了这些算法的性能。据我们所知,这是首个包含路面病害长期跟踪的大规模路面病害数据集,为路面病害的动态跟踪与监测以及优化道路养护策略提供了可靠的数据支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dae/12354873/75486274da88/41597_2025_5748_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验