Mauron Linda, Denis Zakari, Nys Jannes, Carleo Giuseppe
Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Center for Quantum Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Nat Phys. 2025;21(8):1332-1337. doi: 10.1038/s41567-025-02944-3. Epub 2025 Jul 28.
Predicting the dynamical properties of topological matter is a challenging task, not only in theoretical and experimental settings, but also computationally. Numerical studies are often constrained to studying simplified models and lattices. Here we propose a time-dependent correlated ansatz for the dynamical preparation of a quantum-spin-liquid state on a Rydberg atom simulator. Together with a time-dependent variational Monte Carlo technique, we can faithfully represent the state of the system throughout the entire dynamical preparation protocol. We are able to match not only the physically correct form of the Rydberg atom Hamiltonian but also the relevant lattice topology at system sizes that exceed current experimental capabilities. This approach gives access to global quantities such as the topological entanglement entropy, providing insight into the topological properties of the system. Our results confirm the topological properties of the state during the dynamical preparation protocol, and deepen our understanding of topological entanglement dynamics. We show that, while the simulated state exhibits local properties resembling those of a resonating-valence-bond state, in agreement with experimental observations, it lacks the latter's characteristic topological entanglement entropy signature irrespective of the degree of adiabaticity of the protocol.
预测拓扑物质的动力学性质是一项具有挑战性的任务,不仅在理论和实验方面,在计算方面也是如此。数值研究通常局限于研究简化模型和晶格。在此,我们提出一种随时间变化的关联假设,用于在里德堡原子模拟器上动态制备量子自旋液体态。结合随时间变化的变分蒙特卡罗技术,我们能够在整个动态制备过程中忠实地表示系统状态。我们不仅能够匹配里德堡原子哈密顿量的物理正确形式,还能在超过当前实验能力的系统规模下匹配相关晶格拓扑。这种方法能够获取诸如拓扑纠缠熵等全局量,从而深入了解系统的拓扑性质。我们的结果证实了动态制备过程中该态的拓扑性质,并加深了我们对拓扑纠缠动力学的理解。我们表明,虽然模拟态表现出类似于共振价键态的局部性质,这与实验观察结果一致,但无论制备过程的绝热程度如何,它都缺乏后者特有的拓扑纠缠熵特征。