Bell R C, Irian C, McLaughlin P J, Thomas K N, Loew E R, Zamudio K R
Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.
Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA.
Integr Org Biol. 2025 Jul 4;7(1):obaf028. doi: 10.1093/iob/obaf028. eCollection 2025.
Sexual dichromatism is prevalent throughout the animal tree of life and can play an important role in visual signaling and mate choice in many species. Some instances of sexual dichromatism, however, result from a combination of mechanisms including sexual niche partitioning and intrasexual signaling to identify competitors. Sexual dichromatism is relatively rare in anuran amphibians (frogs and toads) but is striking and prevalent in the African reed frogs (Hyperoliidae). In sexually dichromatic hyperoliids, males and females exhibit shared coloration post-metamorphosis, but at the onset of maturity, females undergo a change in color and/or color pattern whereas males typically retain the juvenile coloration. Hypothesized functions of dichromatism in reed frogs include sexual niche partitioning such that males and females use different habitats and their different colorations provide more effective camouflage in their respective habitats or alternatively, that color patterns play a role in sex and/or mate recognition in dense breeding choruses. To test these hypotheses, we characterized several aspects of natural history, ecology, and physiology in a population of the sexually dichromatic forest reed frog () on Bioko Island, Equatorial Guinea. We found that frogs were predominantly observed on green foliage regardless of coloration or sex, providing no support for sex and/or morph differences in habitat use. In addition, our visual modeling analyses demonstrated that both color morphs are likely detectable for typical vertebrate predators in bright light regardless of background foliage coloration. Analyses using a custom reed frog dual-rod photoreceptor visual model do not support the hypothesis that perceive chromatic (hue) differences between conspecific color morphs in dim light conditions, but instead suggest that both color morphs may be more conspicuous to conspecifics than to potential predators in dim light conditions. Finally, we documented multiple instances of mature males exhibiting female coloration and our preliminary steroid hormone exposure experiments indicate that exposure to estradiol induces a color change in adult male , as demonstrated in other members of the species complex. Collectively, our results demonstrate that the population of on Bioko Island is an excellent system for future studies investigating the behavioral, physiological, and molecular mechanisms underlying sexual dichromatism in reed frogs. Furthermore, the foundational data we present set the stage to characterize species discrimination and mate choice among sympatric and closely related species of reed frogs to investigate the roles of intra- or inter-specific female signaling in the evolution of dichromatism.
两性异色现象在整个动物生命树中普遍存在,并且在许多物种的视觉信号传递和配偶选择中发挥着重要作用。然而,两性异色现象的某些实例是由多种机制共同作用导致的,包括性生态位划分和种内信号传递以识别竞争者。两性异色现象在无尾两栖动物(青蛙和蟾蜍)中相对少见,但在非洲芦苇蛙(树蛙科)中却很显著且普遍。在具有两性异色的树蛙中,雄性和雌性在变态后呈现相同的体色,但在成熟时,雌性会发生颜色和/或颜色模式的变化,而雄性通常保留幼体的体色。关于芦苇蛙中两性异色现象的假设功能包括性生态位划分,即雄性和雌性利用不同的栖息地,它们不同的体色在各自的栖息地提供更有效的伪装;或者,颜色模式在密集的繁殖群体中对性别和/或配偶识别起作用。为了验证这些假设,我们对赤道几内亚比奥科岛的两性异色森林芦苇蛙( )种群的自然史、生态学和生理学的几个方面进行了特征描述。我们发现,无论体色或性别如何,青蛙主要出现在绿色树叶上,这并不支持在栖息地利用上存在性别和/或形态差异的观点。此外,我们的视觉模型分析表明,在明亮光线下,对于典型的脊椎动物捕食者来说,两种颜色形态可能都是可检测到的,无论背景树叶的颜色如何。使用定制的芦苇蛙双杆光感受器视觉模型进行的分析并不支持在暗光条件下( )能够感知同种颜色形态之间的色度(色调)差异这一假设,而是表明在暗光条件下,两种颜色形态对同种个体可能比对潜在捕食者更显眼。最后,我们记录了多个成熟雄性呈现雌性体色的实例,并且我们初步的类固醇激素暴露实验表明,暴露于雌二醇会导致成年雄性( )发生颜色变化,这与该物种复合体的其他成员情况相同。总体而言,我们的结果表明,比奥科岛上的( )种群是未来研究芦苇蛙两性异色现象背后的行为、生理和分子机制的绝佳系统。此外,我们提供的基础数据为描述芦苇蛙同域分布且亲缘关系密切的物种之间物种辨别和配偶选择奠定了基础,以研究种内或种间雌性信号在两性异色现象进化中的作用。