Yan Jia, Kang Yue, Fang Weihao, Zhu Bingchen, Song Zhilong
Institute for Energy Research (School of Future Technology), Jiangsu University, Zhenjiang, Jiangsu 212013, China.
Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
ACS Sens. 2025 Aug 22;10(8):6084-6094. doi: 10.1021/acssensors.5c01699. Epub 2025 Jul 26.
The demand for highly sensitive and selective gas sensors for the detection of target gases in complex environments is rapidly increasing. In this study, we present a novel approach utilizing atomic layer deposition (ALD) technology to fabricate gas sensors based on metal-nanocluster functionalized 3D SnO nanotube arrays. Pd/Au-nanocluster-sensitized SnO sensors exhibit high sensitivity to formaldehyde, toluene, and acetone at room temperature, with detection limits of 1.2, 0.75, and 2.9 ppb, respectively. The selectivity of these sensors is due to the catalytic effect of metal nanoclusters on the SnO surface, which changes the density of states near the Fermi level and influences gas adsorption and electronic transfer. The interactions between gas molecules and the Pd or Au nanoclusters are explored through theoretical calculations, revealing the role of metal atom d-orbitals in enhancing the gas-sensing performance. Furthermore, by incorporating the metal-nanocluster decorated sensors into a sensor array and employing a pattern recognition algorithm, we achieve successful discrimination of the target gases in real-time. This study offers a promising method for selectively detecting low-concentration gases in various complex environments.
在复杂环境中检测目标气体时,对高灵敏度和高选择性气体传感器的需求正在迅速增长。在本研究中,我们提出了一种利用原子层沉积(ALD)技术制造基于金属纳米团簇功能化三维SnO纳米管阵列的气体传感器的新方法。Pd/Au纳米团簇敏化的SnO传感器在室温下对甲醛、甲苯和丙酮表现出高灵敏度,检测限分别为1.2、0.75和2.9 ppb。这些传感器的选择性归因于金属纳米团簇对SnO表面的催化作用,这改变了费米能级附近的态密度,并影响气体吸附和电子转移。通过理论计算探索了气体分子与Pd或Au纳米团簇之间的相互作用,揭示了金属原子d轨道在增强气敏性能中的作用。此外,通过将金属纳米团簇修饰的传感器集成到传感器阵列中并采用模式识别算法,我们实现了对目标气体的实时成功鉴别。本研究为在各种复杂环境中选择性检测低浓度气体提供了一种有前景的方法。