Garcia-Pichel Ferran, Farias Júlia, Fernandes Vanessa, Roush Daniel, Swenson Tami L, Kosina Suzanne M, Northen Trent R, Cao Huansheng, Jaunin Samual, Kandel Raju, Gaxiola Roberto
School of Life Sciences, Arizona State University, Tempe, Arizona, USA.
Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA.
J Environ Qual. 2025 Aug 15. doi: 10.1002/jeq2.70070.
The expression of an organism's genes determines its own characteristics in any given environment. In this study, we demonstrate that the phenotypic traits of genetically modified transgenic Arabidopsis thaliana plants, designed for nutrient efficiency and enhanced yield, can be naturally and readily transferred to neighboring wild-type plants. Our findings reveal that the transgenic plants significantly influence the populational, compositional, and functional traits of their root-associated microbiome (RAM), resulting in a larger population, with distinct composition and high functional potential compared to wild-type plants, regardless of soil type. This phenomenon appears to stem from altered metabolite exudation patterns, which enhance root recruitment. Notably, the RAM plays a dual role: it not only contributes to the robust phenotype of the transgenic plants but also facilitates the transfer of these traits to adjacent wild-type plants. Upon transplanting wild-type plants into the presence of transgenics, we observed the induction of transgenic-like phenotypes. Metagenomic and compositional analyses indicate that this transfer is linked to an increase in 2,3-butanediol (2,3-BD) fermenting bacteria. Furthermore, exposure to 2,3-BD alone was sufficient to elicit transgenic phenotypes in wild-type plants. These results suggest that factors external to plant tissues, such as root-associated bacteria and their volatile metabolic products, play a crucial role in the transferability of plant phenotypes to neighboring plants. Our findings underscore the importance of evaluating microbiome interactions in the context of transgenic organisms and open new avenues for alternative agricultural practices that may reduce reliance on genetic modification.
在任何给定环境中,生物体基因的表达决定了其自身的特征。在本研究中,我们证明了为提高养分利用效率和产量而设计的转基因拟南芥植物的表型性状能够自然且容易地转移到邻近的野生型植物中。我们的研究结果表明,转基因植物对其根际微生物群(RAM)的种群、组成和功能性状有显著影响,导致其RAM种群数量更大,与野生型植物相比,组成不同且功能潜力高,且不受土壤类型影响。这种现象似乎源于代谢物分泌模式的改变,从而增强了根系的招募能力。值得注意的是,RAM发挥着双重作用:它不仅有助于转基因植物呈现出健壮的表型,还促进了这些性状向相邻野生型植物的转移。将野生型植物移植到转基因植物存在的环境中后,我们观察到了类似转基因的表型诱导。宏基因组和组成分析表明,这种转移与2,3 - 丁二醇(2,3 - BD)发酵细菌的增加有关。此外,仅接触2,3 - BD就足以在野生型植物中引发转基因表型。这些结果表明,植物组织外部的因素,如根际细菌及其挥发性代谢产物,在植物表型向邻近植物的转移性中起着关键作用。我们的研究结果强调了在转基因生物背景下评估微生物群相互作用的重要性,并为可能减少对基因改造依赖的替代农业实践开辟了新途径。