Lin Hsiang-Wen, Lin Tien-Chao, Hsu Chien-Ning, Yeh Tzu-Pei, Chen Yu-Chieh, Liu Liang-Chih, Lin Chen-Yuan
School of Pharmacy and Graduate Institute, China Medical University, Taichung, Taiwan.
Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan.
BMC Med Inform Decis Mak. 2025 Aug 15;25(1):310. doi: 10.1186/s12911-025-03091-8.
BACKGROUND: Cancer patients receiving targeted therapies need to prevent QTc prolongation and life-threatening cardiovascular (CV) events to maintain a balanced benefit-risk ratio. This study aimed to develop an optimal prediction model for QTc prolongation risk and estimate its risk probability in cancer patients treated with oral tyrosine kinase inhibitors (TKIs). METHODS: This retrospective cohort study analyzed electronic medical records (EMR) of cancer patients newly treated with commonly used oral TKIs at a medical center between January 2016 and December 2020. QTc prolongation was defined as ≥ 450 ms in males and ≥ 470 ms in females using Bazett's formula. The study followed four key steps: (1) Managing missing data, (2) Identifying important variables, (3) Training and testing the best prediction models, (4). Estimating risk probability and determining cut-off points. Both univariate logistic regression (LR) and supervised machine learning (ML) approaches were used for variable selection. The backward LR method and seven ML algorithms were applied to train and test the prediction models. The best model was identified based on model performance, fitting criteria, area under the receiver operating characteristic curve (AUROC), risk probability cut-off points, and clinical relevance. RESULTS: The statistical 12-parameter model demonstrated excellent performance (AUROC = 0.89, sensitivity = 0.91, specificity = 0.75) and strong discrimination ability for risk probability prediction (AUROC = 0.78, cut-off = 0.46), outperforming other ML models. In the final best model: the baseline risk probability of QTc prolongation was 0.13, even in the absence of other contributing factors. Baseline QTc prolongation and a history of cardiovascular disease (excluding arrhythmia, cardiomyopathy, etc.) contributed the most to incremental risk probability (0.471 and 0.282, respectively), after controlling for other factors. The remaining 10 factors each contributed to an increased probability of QTc prolongation for more than 0.14 probability. CONCLUSIONS: A logistic regression model utilizing 12 easily accessible variables from EMRs outperformed ML models in predicting the risk probability of QTc prolongation in cancer patients newly treated with five oral TKIs. These findings serve as a valuable clinical reference for integrating digital monitoring into cardiovascular care for cancer survivors undergoing targeted therapy with TKIs. They also underscore the importance of screening baseline ECG before initiating TKIs to assess the risk of QTc prolongation, facilitating early intervention and prevention in the future.
背景:接受靶向治疗的癌症患者需要预防QTc延长和危及生命的心血管(CV)事件,以维持平衡的获益风险比。本研究旨在开发一种针对QTc延长风险的最佳预测模型,并估计接受口服酪氨酸激酶抑制剂(TKIs)治疗的癌症患者的风险概率。 方法:这项回顾性队列研究分析了2016年1月至2020年12月在一家医疗中心新接受常用口服TKIs治疗的癌症患者的电子病历(EMR)。使用Bazett公式将QTc延长定义为男性≥450毫秒,女性≥470毫秒。该研究遵循四个关键步骤:(1)处理缺失数据,(2)识别重要变量,(3)训练和测试最佳预测模型,(4)估计风险概率并确定截断点。单变量逻辑回归(LR)和监督机器学习(ML)方法均用于变量选择。向后LR方法和七种ML算法应用于训练和测试预测模型。根据模型性能、拟合标准、受试者工作特征曲线下面积(AUROC)、风险概率截断点和临床相关性确定最佳模型。 结果:统计12参数模型表现出优异的性能(AUROC = 0.89,敏感性 = 0.91,特异性 = 0.75),对风险概率预测具有很强的辨别能力(AUROC = 0.78,截断值 = 0.46),优于其他ML模型。在最终的最佳模型中:即使没有其他促成因素,QTc延长的基线风险概率为0.13。在控制其他因素后,基线QTc延长和心血管疾病史(不包括心律失常、心肌病等)对增量风险概率的贡献最大(分别为0.471和0.282)。其余10个因素各自对QTc延长概率的增加贡献超过0.14。 结论:在预测新接受五种口服TKIs治疗的癌症患者QTc延长的风险概率方面,利用来自EMR的12个易于获取变量的逻辑回归模型优于ML模型。这些发现为将数字监测整合到接受TKIs靶向治疗的癌症幸存者的心血管护理中提供了有价值的临床参考。它们还强调了在启动TKIs之前筛查基线心电图以评估QTc延长风险的重要性,有助于未来的早期干预和预防。
Clin Orthop Relat Res. 2024-9-1
J Osteopath Med. 2021-1-1
Rev Cardiovasc Med. 2023-10-19
Curr Issues Mol Biol. 2023-10-15
Front Cardiovasc Med. 2023-1-25
JACC CardioOncol. 2022-6-21
Int J Mol Sci. 2022-3-4
BMC Cancer. 2021-8-27
J Cardiovasc Pharmacol Ther. 2021-7
Int J Cancer. 2020-12-1
Nat Commun. 2020-4-24