Suppr超能文献

含有基于聚乙二醇相变材料的生物炭浸渍纤维素泡沫,用于增强热能存储和光热性能。

Biochar-infused cellulose foams with PEG-based phase change materials for enhanced thermal energy storage and photothermal performance.

作者信息

Baniasadi Hossein, Fathi Ziba, Abidnejad Roozbeh, Silva Pedro E S, Bordoloi Sanandam, Vapaavuori Jaana, Niskanen Jukka, Lizundia Erlantz, Kontturi Eero, Lipponen Juha

机构信息

Polymer Synthesis Technology, School of Chemical Engineering, Aalto University, Espoo, Finland.

Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland.

出版信息

Carbohydr Polym. 2025 Nov 1;367:123999. doi: 10.1016/j.carbpol.2025.123999. Epub 2025 Jul 3.

Abstract

This study presents cellulose-based foams reinforced with biochar and integrated with polyethylene glycol (PEG)-based phase change materials (PCMs) to enhance thermal energy storage and photothermal performance. The foams were fabricated using an energy-efficient, non-freeze-drying method, leveraging cellulose's inherent porosity and structural integrity to create a sustainable and scalable material platform. The optimized cellulose foams exhibited a well-balanced combination of high porosity (85 %), low density (66 kg·m), and minimal shrinkage (5 %), ensuring stability across multiple applications. The hydrophilic-hydrophobic interactions between cellulose, PEG, and biochar played a crucial role in achieving uniform PCM dispersion, enabling effective thermal energy storage (130 J·g) and temperature regulation. Durability tests confirmed the stability of phase-change properties over 100 thermal cycles, demonstrating long-term material resilience. The incorporation of biochar significantly improved photothermal efficiency (85 %) by enhancing light absorption and thermal conductivity while also reinforcing the cellulose matrix. A life cycle assessment (LCA) highlighted the environmental trade-offs, where biochar contributed to carbon sequestration, while PEG introduced a higher carbon footprint but offset other environmental burdens. This work underscores the multifunctional role of cellulose in developing sustainable, bio-based thermal management materials, providing an eco-friendly alternative to conventional insulation and energy storage systems.

摘要

本研究提出了一种用生物炭增强并与聚乙二醇(PEG)基相变材料(PCM)集成的纤维素基泡沫材料,以提高热能存储和光热性能。这些泡沫材料采用了一种节能的非冷冻干燥方法制备,利用纤维素固有的孔隙率和结构完整性,创建了一个可持续且可扩展的材料平台。优化后的纤维素泡沫材料展现出高孔隙率(85%)、低密度(66 kg·m)和最小收缩率(5%)的良好平衡组合,确保了在多种应用中的稳定性。纤维素、PEG和生物炭之间的亲水 - 疏水相互作用在实现PCM均匀分散方面发挥了关键作用,实现了有效的热能存储(130 J·g)和温度调节。耐久性测试证实了相变特性在100个热循环中的稳定性,表明了材料的长期韧性。生物炭的加入通过增强光吸收和热导率,同时增强纤维素基体,显著提高了光热效率(85%)。生命周期评估(LCA)突出了环境权衡,其中生物炭有助于碳固存,而PEG带来了更高的碳足迹,但抵消了其他环境负担。这项工作强调了纤维素在开发可持续的生物基热管理材料中的多功能作用,为传统隔热和储能系统提供了一种环保替代方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验