Suppr超能文献

Triple Regulation of Superhydrophilic-Superaerophobic Mo,V-NiS/NiS Heteronanoflowers for Efficient Bifunctional Water Splitting and Multi-Source Energy-Driven Hydrogen Production.

作者信息

Mu Leihuan, Li Jiehui, Liu Qinghua, Wang Yuqing, Feng Pu, Liu Hui, Sun Cai-Li, Zhu Xuedan, He Jinmei, Qu Mengnan

机构信息

College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China.

College of Energy and Mining Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China.

出版信息

Small Methods. 2025 Sep;9(9):e01181. doi: 10.1002/smtd.202501181. Epub 2025 Aug 15.

Abstract

The urgent demand for sustainable energy has highlighted electrocatalytic water splitting as a key carbon-neutral technology. However, nickel sulfide-based catalysts face challenges of limited intrinsic activity and inefficient gas bubble release. Herein, a triple-engineering strategy constructs a hierarchical Mo, V-co-doped NiS/NiS heteronanoflower electrode in situ on nickel foam (NF) via a one-step hydrothermal synthesis. The synergistic effects of dual-atom doping and phase-separated heterointerfaces not only optimize electronic structure but also confer superhydrophilic and superaerophobic surface properties, significantly enhancing both hydrogen evolution reaction (HER; 55 mV@10 mA cm) and oxygen evolution reaction (OER; 185 mV@10 mA cm) kinetics. The resulting electrocatalyst drives overall water splitting at a low cell voltage of 1.48 V. Density functional theory (DFT) calculations elucidate that Mo/V doping induces strong Ni 3d-Mo/V 3d orbital hybridization, shifting down the d-band center and optimizing the adsorption free energies of H and OOH intermediates. Furthermore, experimental demonstrations confirm the feasibility of water electrolysis driven by mechanical, wind, and solar energies, introducing a novel mechanical-to-hydrogen energy conversion system using triboelectric nanogenerators (TENGs). This work integrates band structure modulation, interfacial engineering, and wettability regulation, advancing the design of bifunctional electrocatalysts for sustainable energy conversion.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验