Aljayyousi Hiba, Sahloul Sarah, Orozaliev Ajymurat, Baban Navajit, Van Anh-Duc, Al Nuairi Amani, John Pauline, Zam Azhar, Percipalle Piergiorgio, Song Yong-Ak
Divison of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates.
Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates.
APL Bioeng. 2025 Aug 13;9(3):036111. doi: 10.1063/5.0262536. eCollection 2025 Sep.
3D cell spheroids have become crucial models for biomedical research, yet maintaining their growth and viability remains challenging due to diffusion limitations. We developed a versatile microfluidic modular device with a reconfigurable channel design that is customizable by altering the channel configuration in the adhesive layer. The resealable adhesive layer also enables open access to the wells for loading cells, continuous perfusion after closing, and facile retrieval of spheroids for downstream analysis and imaging after culturing. We evaluated three channel configurations using Mouse Embryonic Fibroblasts (MEFs), human induced Pluripotent Stem Cells (hiPSCs), and MDA-MB-231 breast cancer cells. The device significantly improved spheroid growth in MEFs and hiPSCs, increasing up to 139.9% over controls in 14 days. In contrast, MDA-MB-231 spheroids exhibited slower growth, highlighting the need for balancing nutrient delivery with autocrine factor retention. Sphericity was maintained in MEF and MDA-MB-231 spheroids, while hiPSC spheroids experienced budding. optical coherence tomography (OCT) provided noninvasive 3D viability assessments of the spheroids. Our findings demonstrate that this modular microfluidic device, combined with OCT analysis, offers a powerful platform for advancing spheroid culture techniques and opens up new opportunities in applications such as drug testing, studying spheroid-spheroid interactions, and collecting spheroid secretions.
3D细胞球体已成为生物医学研究的关键模型,但由于扩散限制,维持其生长和活力仍然具有挑战性。我们开发了一种通用的微流控模块化装置,其通道设计可重新配置,通过改变粘附层中的通道配置即可实现定制。可重新密封的粘附层还允许打开孔以便加载细胞,封闭后进行连续灌注,并在培养后方便地取出球体进行下游分析和成像。我们使用小鼠胚胎成纤维细胞(MEF)、人诱导多能干细胞(hiPSC)和MDA-MB-231乳腺癌细胞评估了三种通道配置。该装置显著改善了MEF和hiPSC中的球体生长,在14天内比对照增加了139.9%。相比之下,MDA-MB-231球体生长较慢,这突出了在营养物质输送与自分泌因子保留之间进行平衡的必要性。MEF和MDA-MB-231球体保持了球形度,而hiPSC球体则出现了出芽现象。光学相干断层扫描(OCT)提供了球体的非侵入性三维活力评估。我们的研究结果表明,这种模块化微流控装置与OCT分析相结合,为推进球体培养技术提供了一个强大的平台,并为药物测试、研究球体-球体相互作用以及收集球体分泌物等应用开辟了新的机会。