Pignon Estelle, Schaerli Yolanda
Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland.
ISME Commun. 2025 Jun 27;5(1):ycaf107. doi: 10.1093/ismeco/ycaf107. eCollection 2025 Jan.
Microbial communities are frequently organized into complex spatial structures, shaped by intrinsic cellular traits, interactions between community members, initial growth condition or environmental factors. Understanding the mechanisms that drive these spatial patterns is essential for uncovering fundamental principles of microbial ecology and for developing applications. Using genetic engineering and synthetic microbial communities allows us to decipher how specific parameters influence spatial organization. In this review, we highlight recent studies that leverage synthetic microbial communities to deepen our understanding of microbial spatial ecology. We begin by exploring how initial conditions, such as cell density and relative species abundance, influence spatial organization. We then focus on studies that examine the role of individual microbial traits, such as cell shape and motility. Next, we discuss the impact of contact-dependent and long-range interactions, including metabolite exchange and toxin release. Furthermore, we highlight the influence of environmental factors on spatial dynamics. Finally, we address the current limitations of synthetic approaches and propose future directions to bridge the gap between engineered and natural systems.
微生物群落常常组织成复杂的空间结构,其形成受到内在细胞特性、群落成员之间的相互作用、初始生长条件或环境因素的影响。理解驱动这些空间模式的机制对于揭示微生物生态学的基本原理以及开发相关应用至关重要。利用基因工程和合成微生物群落使我们能够解读特定参数如何影响空间组织。在本综述中,我们重点介绍了最近利用合成微生物群落加深我们对微生物空间生态学理解的研究。我们首先探讨初始条件,如细胞密度和相对物种丰度,如何影响空间组织。然后,我们关注研究单个微生物特性,如细胞形状和运动性的作用。接下来,我们讨论接触依赖性和远程相互作用的影响,包括代谢物交换和毒素释放。此外,我们强调环境因素对空间动态的影响。最后,我们阐述合成方法目前的局限性,并提出未来方向以弥合工程系统与自然系统之间的差距。