Mattiotti Giovanni, Nanna Vittoria, Giulini Marco, Alberga Domenico, Mangiatordi Giuseppe Felice, Sánchez-Puig Nuria, Saviano Michele, Tubiana Luca, Potestio Raffaello, Lattanzi Gianluca, Siliqi Dritan
Physics Department, University of Trento, Via Sommarive 14, I-38123 Trento, Italy.
INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, I-38123 Trento, Italy.
ACS Omega. 2025 Aug 1;10(31):35103-35118. doi: 10.1021/acsomega.5c04764. eCollection 2025 Aug 12.
Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive disorder characterized by pleiotropic phenotypes, including pancreatic insufficiency, skeletal abnormalities, and bone marrow dysfunction. Notably, patients with SDS exhibit an increased risk of developing myelodysplastic syndrome and leukemia. In this study, we employed a combination of comparative molecular dynamics (MD) simulations and small-angle X-ray scattering (SAXS)-based analysis to investigate the Shwachman-Bodian-Diamond syndrome protein (SBDS). Specifically, we explored the molecular basis of the syndrome by examining the conformational dynamics of a set of missense mutants of SBDS in comparison to those of the wild-type (WT) protein. Our observations suggest that different mutations may impact (i) the interaction of SBDS with the ribosome, (ii) the binding of SBDS to Elongation Factor-Like 1 (EFL1), and (iii) the SBDS rearrangements coupled to EFL1 binding. Extensive MD simulations, with a total simulation time of 17 μs, revealed variations in the interdomain flexibility of SBDS, which are consistent with previously published affinity data and the new SAXS experimental data presented here. We propose a structural rationale behind the previously reported weak interaction of mutants I167T, R175W, and I212T with EFL1. Additionally, SAXS data indicate that R19Q, I167T, and R175W mutants exhibit altered relative abundances of SBDS conformational states in solution, further supporting our computational results. Overall, our integrated computational and experimental approach provides a comprehensive understanding of how specific mutations in SBDS alter its structural dynamics and binding interactions. These insights enhance our broader understanding of SBDS function and its role in ribosome biogenesis.
施瓦赫曼-戴蒙德综合征(SDS)是一种罕见的常染色体隐性疾病,其特征为多效性表型,包括胰腺功能不全、骨骼异常和骨髓功能障碍。值得注意的是,SDS患者发生骨髓增生异常综合征和白血病的风险增加。在本研究中,我们采用比较分子动力学(MD)模拟和基于小角X射线散射(SAXS)的分析相结合的方法来研究施瓦赫曼-博迪安-戴蒙德综合征蛋白(SBDS)。具体而言,我们通过检查一组SBDS错义突变体与野生型(WT)蛋白的构象动力学,探索了该综合征的分子基础。我们的观察结果表明,不同的突变可能会影响:(i)SBDS与核糖体的相互作用;(ii)SBDS与延伸因子样1(EFL1)的结合;(iii)与EFL1结合相关的SBDS重排。总共17微秒的广泛MD模拟揭示了SBDS结构域间灵活性的变化,这与先前发表的亲和力数据以及此处呈现的新SAXS实验数据一致。我们提出了先前报道的突变体I167T、R175W和I212T与EFL1之间弱相互作用背后的结构原理。此外,SAXS数据表明,R19Q、I167T和R175W突变体在溶液中SBDS构象状态的相对丰度发生了改变,进一步支持了我们的计算结果。总体而言,我们综合的计算和实验方法全面理解了SBDS中的特定突变如何改变其结构动力学和结合相互作用。这些见解加深了我们对SBDS功能及其在核糖体生物发生中作用的更广泛理解。