Nguyen De, Kinashi Kenji, Nishikawa Yukihiro, Sakai Wataru, Tsutsumi Naoto
Doctor's Program of Materials Chemistry, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan.
Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan.
ACS Omega. 2025 Aug 1;10(31):34389-34398. doi: 10.1021/acsomega.5c02353. eCollection 2025 Aug 12.
The development of biobased porous materials using straightforward procedures remains challenging. This study introduces nonsolvent-induced phase separation-jet spinning (NIPS-JS), an innovative technique for fabricating cellulose acetate nanofilms. Coupling nonsolvent-induced phase separation (NIPS) with the turbulent mixing effects of high-velocity coaxial jets, NIPS-JS, achieves rapid and efficient nanofilm formation (40-50 nm thickness), demonstrating production rates exceeding 0.8 g·min and possessing adjustable parameters for optimization. The NIPS-JS technique holds promise for processing of diverse polymeric materials undergoing NIPS. Furthermore, this study demonstrates a novel application of NIPS-JS films for fabricating ultralight cellulosic sponges using cryo-templating and lyophilization, reducing the use of organic solvents and chemical cross-linkers. The resulting monolithic, three-dimensional networks, stabilized by robust lamination of individual thin films, exhibit ultralow density (5-10 kg·m), high porosity (>99%), and excellent stability. Notably, the addition of 0.2-1 wt % ethanol enhances the reproducibility of the cryo-templating step and minimizes shrinkage. This cost-effective and scalable approach offers a promising pathway for the production of innovative porous materials without chemical cross-linkers.
采用简单方法开发生物基多孔材料仍然具有挑战性。本研究引入了非溶剂诱导相分离喷射纺丝(NIPS-JS),这是一种制备醋酸纤维素纳米薄膜的创新技术。NIPS-JS将非溶剂诱导相分离(NIPS)与高速同轴射流的湍流混合效应相结合,实现了快速高效的纳米薄膜形成(厚度为40 - 50纳米),生产速率超过0.8克·分钟,且具有可调节的参数用于优化。NIPS-JS技术有望用于处理各种经历NIPS的聚合物材料。此外,本研究展示了NIPS-JS薄膜在使用冷冻模板和冻干法制造超轻纤维素海绵方面的新应用,减少了有机溶剂和化学交联剂的使用。通过单个薄膜的牢固层压稳定而成的整体式三维网络,具有超低密度(5 - 10千克·立方米)、高孔隙率(>99%)和出色的稳定性。值得注意的是,添加0.2 - 1重量%的乙醇可提高冷冻模板步骤的可重复性并使收缩最小化。这种经济高效且可扩展的方法为生产无化学交联剂的创新多孔材料提供了一条有前景的途径。