Garcia Jan Ulric, Iwama Tatsuhiro, Chan Eva Y, Tree Douglas R, Delaney Kris T, Fredrickson Glenn H
Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States.
Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States.
ACS Macro Lett. 2020 Nov 17;9(11):1617-1624. doi: 10.1021/acsmacrolett.0c00609. Epub 2020 Oct 26.
We report the first simulations of nonsolvent-induced phase separation (NIPS) that predict membrane microstructures with graded asymmetric pore size distribution. In NIPS, a polymer solution film is immersed in a nonsolvent bath, enriching the film in nonsolvent, and leading to phase separation that forms a solid polymer-rich membrane matrix and polymer-poor membrane pores. We demonstrate how mass-transfer-induced spinodal decomposition, thermal fluctuations, and glass-transition dynamics-implemented with mobility contrast between the polymer-rich and polymer-poor phases-are essential to the formation of asymmetric membrane microstructures. Specifically, we show that the competition between the propagation of the phase-separation and glass-transition fronts determines the degree of pore-size asymmetry. We also explore the sensitivity of these microstructures to the initial film composition, and compare their formation in 2D and 3D.
我们报告了首次对非溶剂诱导相分离(NIPS)的模拟,该模拟预测了具有分级不对称孔径分布的膜微观结构。在NIPS中,聚合物溶液膜被浸入非溶剂浴中,使膜富含非溶剂,并导致相分离,形成富含聚合物的固体膜基质和贫聚合物的膜孔。我们证明了传质诱导的旋节线分解、热涨落以及在富聚合物相和贫聚合物相之间具有迁移率对比的玻璃化转变动力学,对于不对称膜微观结构的形成至关重要。具体而言,我们表明相分离前沿和玻璃化转变前沿的传播之间的竞争决定了孔径不对称程度。我们还探讨了这些微观结构对初始膜组成的敏感性,并比较了它们在二维和三维中的形成情况。