Sanghai Nitesh, Tranmer Geoffrey K
College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada.
ACS Pharmacol Transl Sci. 2025 Jul 28;8(8):2415-2430. doi: 10.1021/acsptsci.5c00403. eCollection 2025 Aug 8.
Amyotrophic lateral sclerosis (ALS) is a rare motor neurodegenerative disease affecting multiple cellular proteins during the progression of the disease. ALS was first discovered by Charcot in 1869, and since then, scientists have been unable to identify a singular cause of the disease. Further, there are no effective treatments available to cure ALS. The benchmark discovery of humanized preclinical SOD1 mouse models, which recapitulates the clinical and pathological phenotypes of human ALS, gives hope to medicinal chemists and neuroscientists around the globe that a suitable drug-like molecule can be discovered and translated into human beings as a means to slow down the progression of the disease. However, little success has been achieved until now in terms of finding an effective treatment for heterogenic and incurable ALS. One area marked for improvement is the use of semiquantitative, antibody-based targeted Western blotting (WB) experiments, which lack the power to analyze multiple cellular events within the entire dysregulated proteomic system. With the inconsistency of WB experiments, unexpected cellular pathways go undiscovered, and hence, loss of translation with no target engagement is seen from preclinical to human clinical ALS. Recent advancements in discovery-based quantitative proteomics have many advantages over WB. These innovative techniques could help solve the inherent problem in WB and their inability to discover multiple altered proteins with the added capability of longitudinal analysis in preclinical SOD1 models, further validating the findings in human ALS. Herein, we applied a holistic approach to summarize various reports on the use of proteomics in ALS from the published literature, and importantly, we found that using a discovery-based proteomics approach in SOD1 preclinical ALS models has revealed a more diverse and global picture of pathological proteins that affect multiple pathways during different stages of disease progression. Furthermore, we found that the proteomic profiling of the humanized SOD1 mouse model provided a proof of principle for translating the diverse pathological biomarker proteins identified in clinical human ALS cases. Moreover, we believe that advancements in the proteomics approach toward ALS biomarkers could bridge the gap between preclinical and clinical studies, enabling scientists worldwide to discover novel biomarkers and treatments that modify the progression of ALS.
肌萎缩侧索硬化症(ALS)是一种罕见的运动神经元退行性疾病,在疾病进展过程中会影响多种细胞蛋白。ALS于1869年由夏科首次发现,从那时起,科学家们一直未能确定该疾病的单一病因。此外,目前尚无有效的治疗方法来治愈ALS。人源化临床前SOD1小鼠模型的基准发现,重现了人类ALS的临床和病理表型,给全球的药物化学家们和神经科学家们带来了希望,即可以发现一种合适的类药物分子并转化应用于人类,以此减缓疾病的进展。然而,到目前为止,在寻找针对异质性且无法治愈的ALS的有效治疗方法方面,几乎没有取得成功。一个有待改进的领域是使用基于抗体的半定量靶向蛋白质印迹(WB)实验,这种实验缺乏分析整个失调蛋白质组系统内多个细胞事件的能力。由于WB实验结果不一致,意外的细胞途径未被发现,因此,从临床前到人类临床ALS,会出现没有靶点参与的转化失败情况。基于发现的定量蛋白质组学的最新进展相比WB有许多优势。这些创新技术有助于解决WB中固有的问题,以及其无法发现多种改变的蛋白质的问题,同时还具备在临床前SOD1模型中进行纵向分析的额外能力,进一步验证人类ALS中的研究结果。在此,我们采用了一种整体方法来总结已发表文献中关于蛋白质组学在ALS中应用的各种报告,重要的是,我们发现,在SOD1临床前ALS模型中使用基于发现的蛋白质组学方法,揭示了一幅更加多样化和全面的病理蛋白图景,这些蛋白在疾病进展的不同阶段影响多种途径。此外,我们发现人源化SOD1小鼠模型的蛋白质组分析为转化临床人类ALS病例中鉴定出的多种病理生物标志物蛋白提供了原理证明。此外,我们相信蛋白质组学方法在ALS生物标志物方面的进展可以弥合临床前和临床研究之间的差距,使全球科学家能够发现改变ALS进展的新型生物标志物和治疗方法。