Ponce Belén, Zamora-Quiroz Agustín, González Ernesto, Andler Rodrigo, Díaz-Barrera Alvaro
Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
Universidad Técnica Federico Santa María, Valparaíso, Chile.
Front Bioeng Biotechnol. 2025 Jul 31;13:1593893. doi: 10.3389/fbioe.2025.1593893. eCollection 2025.
Alginates are polysaccharides composed of (1-4)-β-D-mannuronic acid (M) and α-L-guluronic acid (G), whose proportions influence their rheological properties and a wide range of applications in the food, pharmaceutical, and biomedical industries. , a Gram-negative bacterium, has been studied for its ability to produce alginate due to its capacity to fix atmospheric nitrogen and its high respiratory activity. The biosynthesis of alginate in involves precursor synthesis, polymerization, modification, and secretion, which are regulated by complex mechanisms, including the secondary messenger c-di-GMP. This regulatory network links cellular respiration with alginate yield and molecular characteristics. Fermentation strategies show that high oxygen transfer rates (OTRs) enhance alginate production, whereas low OTRs favor the synthesis of alginate with higher molecular weights and higher G/M ratios, which are crucial for advanced applications such as hydrogels and drug delivery systems. Insights into these biosynthetic and regulatory processes enable scalable production of high-quality alginate, bridging laboratory research with industrial applications and expanding its potential in the biotechnological and medical fields.
藻酸盐是由(1-4)-β-D-甘露糖醛酸(M)和α-L-古洛糖醛酸(G)组成的多糖,其比例会影响它们的流变学性质以及在食品、制药和生物医学行业中的广泛应用。 ,一种革兰氏阴性菌,因其固定大气氮的能力和高呼吸活性而被研究其产生藻酸盐的能力。藻酸盐在 中的生物合成涉及前体合成、聚合、修饰和分泌,这些过程由复杂的机制调节,包括二级信使环二鸟苷酸(c-di-GMP)。这种调节网络将细胞呼吸与藻酸盐产量和分子特征联系起来。发酵策略表明,高氧传递速率(OTR)可提高藻酸盐产量,而低OTR则有利于合成具有更高分子量和更高G/M比的藻酸盐,这对于水凝胶和药物递送系统等先进应用至关重要。对这些生物合成和调节过程的深入了解能够实现高质量藻酸盐的规模化生产,将实验室研究与工业应用联系起来,并扩大其在生物技术和医学领域的潜力。