文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

揭示氨诱导的细胞死亡:透明细胞肾细胞癌预后的新前沿。

Unveiling ammonia-induced cell death: a new frontier in clear cell renal cell carcinoma prognosis.

作者信息

Yu Peize, Zhong Qikai, Wang Xinlei, Liu Yifang, Liu Qiang, Zhang Yuqiang, Lu Jiawei, Dong Yang, Han Cong-Hui

机构信息

Department of Urology, Xuzhou Medical University, Xuzhou, Jiangsu, China.

Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China.

出版信息

Front Immunol. 2025 Jul 31;16:1636977. doi: 10.3389/fimmu.2025.1636977. eCollection 2025.


DOI:10.3389/fimmu.2025.1636977
PMID:40821775
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12350399/
Abstract

BACKGROUND: Clear cell renal cell carcinoma (KIRC) is the most aggressive renal carcinoma subtype of renal carcinoma, characterized by high mortality, early metastasis, and resistance to treatment. Ammonia-induced cell death (AICD) has recently been identified as a novel metabolic mechanism influencing tumor progression, yet its prognostic implication and regulatory networks in KIRC remain underexplored. METHODS: Transcriptomic and clinical information from the TCGA-KIRC cohort and the validation cohort (E-MTAB-1980) were analyzed. Differentially expressed AICD-related genes were identified through differential expression analysis, univariate Cox regression, and machine learning algorithms (LASSO, random forest, and CoxBoost). A prognostic risk model was developed via multivariate Cox regression. Spatial and single-cell transcriptomics were employed to characterize the immune microenvironment heterogeneity. Cell-based experiments were performed to investigate the potential involvement of in KIRC. Molecular docking and pan-cancer analyses were conducted to identify therapeutic candidates and ATP1A1-related mechanisms. RESULTS: Five AICD-related genes (, , , , and ) were identified and selected to construct a risk score model. The model demonstrated high accuracy and was integrated into a nomogram for clinical application. High-risk (HR) patients exhibited immunosuppressive microenvironments, elevated tumor mutational burden (TMB), and genomic instability. functional assays confirmed that knockdown significantly enhanced the proliferative, migratory, and invasive capabilities of renal carcinoma cells (A498 and 786-O), suggesting a suppressive role for in malignant tumor progression. , a core gene, was associated with metabolic reprogramming and chemotherapy sensitivity across multiple cancers. Molecular docking revealed Emodinanthrone as a high-affinity ligand for (-6.8 kcal/mol). CONCLUSION: This study identifies an AICD-associated gene signature as a robust prognostic tool for KIRC, revealing its interactions with immune evasion and genomic instability. is proposed as a promising therapeutic target, with Emodinanthrone emerging as a novel drug candidate. These findings contribute to the advancement of personalized treatment strategies for KIRC patients.

摘要

背景:透明细胞肾细胞癌(KIRC)是肾癌中侵袭性最强的亚型,具有高死亡率、早期转移和治疗抵抗的特点。氨诱导细胞死亡(AICD)最近被确定为一种影响肿瘤进展的新型代谢机制,但其在KIRC中的预后意义和调控网络仍未得到充分探索。 方法:分析了来自TCGA-KIRC队列和验证队列(E-MTAB-1980)的转录组学和临床信息。通过差异表达分析、单变量Cox回归和机器学习算法(LASSO、随机森林和CoxBoost)鉴定差异表达的AICD相关基因。通过多变量Cox回归建立预后风险模型。采用空间和单细胞转录组学来表征免疫微环境异质性。进行基于细胞的实验以研究其在KIRC中的潜在作用。进行分子对接和泛癌分析以鉴定治疗候选物和ATP1A1相关机制。 结果:鉴定并选择了五个AICD相关基因(、、、和)来构建风险评分模型。该模型显示出高准确性,并被整合到用于临床应用的列线图中。高危(HR)患者表现出免疫抑制微环境、肿瘤突变负担(TMB)升高和基因组不稳定。功能实验证实敲低显著增强了肾癌细胞(A498和786-O)的增殖、迁移和侵袭能力,表明其在恶性肿瘤进展中起抑制作用。作为核心基因,与多种癌症的代谢重编程和化疗敏感性相关。分子对接显示大黄素蒽酮是其高亲和力配体(-6.8 kcal/mol)。 结论:本研究确定了一种AICD相关基因特征作为KIRC的强大预后工具,揭示了其与免疫逃逸和基因组不稳定的相互作用。被提议作为一个有前景的治疗靶点,大黄素蒽酮成为一种新型药物候选物。这些发现有助于推进KIRC患者的个性化治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ee/12350399/1e3dd7d26501/fimmu-16-1636977-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ee/12350399/d954883a0f80/fimmu-16-1636977-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ee/12350399/32254e03131c/fimmu-16-1636977-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ee/12350399/2788fb5e12c5/fimmu-16-1636977-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ee/12350399/9ded1a8751c7/fimmu-16-1636977-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ee/12350399/cfea1ffdee70/fimmu-16-1636977-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ee/12350399/d6d1147e249d/fimmu-16-1636977-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ee/12350399/59d0e509c2aa/fimmu-16-1636977-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ee/12350399/eebdb2d96d89/fimmu-16-1636977-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ee/12350399/6e6ad4232592/fimmu-16-1636977-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ee/12350399/6070672bd5d0/fimmu-16-1636977-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ee/12350399/1e3dd7d26501/fimmu-16-1636977-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ee/12350399/d954883a0f80/fimmu-16-1636977-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ee/12350399/32254e03131c/fimmu-16-1636977-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ee/12350399/2788fb5e12c5/fimmu-16-1636977-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ee/12350399/9ded1a8751c7/fimmu-16-1636977-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ee/12350399/cfea1ffdee70/fimmu-16-1636977-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ee/12350399/d6d1147e249d/fimmu-16-1636977-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ee/12350399/59d0e509c2aa/fimmu-16-1636977-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ee/12350399/eebdb2d96d89/fimmu-16-1636977-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ee/12350399/6e6ad4232592/fimmu-16-1636977-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ee/12350399/6070672bd5d0/fimmu-16-1636977-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ee/12350399/1e3dd7d26501/fimmu-16-1636977-g011.jpg

相似文献

[1]
Unveiling ammonia-induced cell death: a new frontier in clear cell renal cell carcinoma prognosis.

Front Immunol. 2025-7-31

[2]
Multi-omics analysis reveals the role of ribosome biogenesis in malignant clear cell renal cell carcinoma and the development of a machine learning-based prognostic model.

Front Immunol. 2025-6-26

[3]
Unveiling the hidden role of disulfidptosis in kidney renal clear cell carcinoma: a prognostic signature for personalized treatment.

Apoptosis. 2024-6

[4]
Development and Validation of Anoiki-Related Lncrna Signature Prediction Model for KIRC Prognosis.

Comb Chem High Throughput Screen. 2025

[5]
Construction and validation of a lipid metabolism-related genes prognostic signature for skin cutaneous melanoma.

Biochem Biophys Res Commun. 2025-5-29

[6]
Exploring the prognostic role and expression patterns of FAM3A family genes in kidney renal clear cell carcinoma.

Sci Rep. 2025-7-1

[7]
Integrated single-cell and transcriptomic analysis of bone marrow-derived metastatic neuroblastoma reveals molecular mechanisms of metabolic reprogramming.

Sci Rep. 2025-8-5

[8]
Interplay between tumor mutation burden and the tumor microenvironment predicts the prognosis of pan-cancer anti-PD-1/PD-L1 therapy.

Front Immunol. 2025-7-24

[9]
COL6A2 in clear cell renal cell carcinoma: a multifaceted driver of tumor progression, immune evasion, and drug sensitivity.

J Transl Med. 2025-8-6

[10]
Identification and Validation of a Prognostic Model Based on Tumour Necrosis Factor-Related mRNAs for Kidney Renal Clear Cell Carcinoma.

J Cell Mol Med. 2025-7

本文引用的文献

[1]
Low extracellular pH protects cancer cells from ammonia toxicity.

Cell Death Discov. 2025-4-3

[2]
PBRM1 deficiency enhances PD1 immunotherapeutic sensitivity via chromosomal accessibility in colorectal cancer.

Theranostics. 2025-2-18

[3]
Hyperammonemia induces programmed liver cell death.

Sci Adv. 2025-3-7

[4]
Novel roles of ammonia in physiology and cancer.

J Mol Cell Biol. 2025-3-6

[5]
Ammonia-Induced Cell Death: A Novel Frontier to Enhance Cancer Immunotherapy.

Immunology. 2025-5

[6]
Thiostrepton suppresses intrahepatic cholangiocarcinoma progression via FOXM1-mediated tumor-associated macrophages reprogramming.

Transl Oncol. 2025-4

[7]
Hypericin photoactivation induces triple-negative breast cancer cells pyroptosis by targeting the ROS/CALR/Caspase-3/GSDME pathway.

J Adv Res. 2025-1-25

[8]
Hypericin-Mediated Photodynamic Therapy for Head and Neck Cancers: A Systematic Review.

Biomedicines. 2025-1-13

[9]
β-Catenin/c-Myc Axis Modulates Autophagy Response to Different Ammonia Concentrations.

Adv Biol (Weinh). 2025-3

[10]
Cepharanthine sensitizes gastric cancer cells to chemotherapy by targeting TRIB3-FOXO3-FOXM1 axis to inhibit autophagy.

Phytomedicine. 2024-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索