Suppr超能文献

胡椒乙胺通过靶向 TRIB3-FOXO3-FOXM1 轴抑制自噬从而增敏胃癌细胞对化疗的敏感性。

Cepharanthine sensitizes gastric cancer cells to chemotherapy by targeting TRIB3-FOXO3-FOXM1 axis to inhibit autophagy.

机构信息

The Affiliated Hospital of Qingdao University, Department of Oncology, No.16 Jiangsu Road, Shinan District, Qingdao 266000, China.

Qingdao Municipal Hospital, Department of Orthopedic Surgery, No.1 Jiaozhou Road, Shibei District, Qingdao City, Shandong Province, Qingdao 266000, China.

出版信息

Phytomedicine. 2024 Dec;135:156161. doi: 10.1016/j.phymed.2024.156161. Epub 2024 Oct 16.

Abstract

BACKGROUND

Gastric cancer is among the common solid tumors. Chemotherapy resistance is the most common issue in gastric cancer treatment. Inhibiting intracellular autophagy may be a feasible method for overcoming chemotherapy resistance. Cepharanthine (CEP), a natural small molecule extracted from the stephania cephalantha Hayata plant, has been demonstrated to significantly inhibit cancer growth and can regulate autophagy. Although CEP can significantly inhibit cancer growth, it remains unclear whether CEP can regulate autophagy in gastric cancer. This study aimed to investigate whether CEP can enhance the sensitivity of gastric cancer to chemotherapy and elucidate its molecular mechanism.

METHODS

Three gastric cancer cell lines (AGS, SGC7901, and MFC) and one normal gastric mucosal epithelial cell line (GES-1) were used for in vitro experiments. The characterization of autophagy in gastric cancer cells included the detection of autophagy markers and autophagy flux through immunofluorescence staining and Western blotting, as well as the assessment of lysosomal function using fluorescence staining (LysoTracker Red DND-99, Acridine Orange staining) and Western blotting. The cytotoxicity of CEP, autophagy inhibitors (chloroquine [CQ] and 3-methyladenine [3MA]), and chemotherapy drugs (doxorubicin [DOX] and cisplatin [CIS]) was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell colony formation, and fluorescence staining techniques (H2DCFDA, Dihydroethidium, and JC-1 staining). The interaction between CEP and autophagy inhibitors was tested in a 615 mice model, and changes in the gut microbiota were determined through accurate 16S absolute quantification sequencing. The signaling pathway and autophagy regulatory target TRIB3-FOXO3-FOXM1 were confirmed through molecular docking, RNA sequencing, bioinformatic analysis, transfection techniques, and Western blotting.

RESULTS

CEP blocked autophagic flux in gastric cancer cells without affecting lysosomal function. As a novel autophagy inhibitor, CEP could combine with conventional autophagy inhibitors (CQ and 3MA) to block intracellular autophagy, thereby inhibiting gastric cancer growth. During this process, changes in the gut microbiota were observed, including low-level changes in Odoribacterium, Erysipelatoclostridium, and ParaPrevotella and high-level changes in Ileibacterium, Enterorhabdus, and Bifidobacterium. Additionally, CEP synergistically inhibited the growth of gastric cancer when combined with chemotherapy drugs. Mechanistically, the TRIB3-FOXO3-FOXM1 signaling axis was found to be involved in the inhibition of gastric cancer by CEP combined with autophagy inhibitors and chemotherapy drugs, thereby mediating cell apoptosis.

CONCLUSION

This study links the TRIB3-FOXO3-FOXM1 axis with chemotherapy efficacy. Our findings demonstrated that CEP inhibits autophagy by modulating the FOXO3-FOXM1 axis. When combined with chemotherapy drugs (DOX and CIS), CEP, as an autophagy inhibitor, can limit TRIB3 protein expression, thereby regulating the FOXO3-FOXM1 axis and enhancing its ability to prevent gastric cancer growth. These findings may contribute to improving the prognosis of patients with gastric cancer. Furthermore, these results enrich the fundamental understanding of how autophagy inhibition can enhance clinical cancer treatment efficacy and provide insights into the potential mechanisms by which CEP functions as an anti-tumor drug, thereby exploring its value for clinical application.

摘要

背景

胃癌是常见的实体肿瘤之一。化疗耐药是胃癌治疗中最常见的问题。抑制细胞内自噬可能是克服化疗耐药的一种可行方法。芹菜素(CEP)是从Stephania cephalantha Hayata 植物中提取的天然小分子,已被证明能显著抑制癌症生长,并能调节自噬。虽然 CEP 能显著抑制癌症生长,但尚不清楚 CEP 是否能调节胃癌中的自噬。本研究旨在探讨 CEP 是否能增强胃癌对化疗的敏感性,并阐明其分子机制。

方法

使用三种胃癌细胞系(AGS、SGC7901 和 MFC)和一种正常胃黏膜上皮细胞系(GES-1)进行体外实验。通过免疫荧光染色和 Western blot 检测自噬标志物和自噬流,以及使用荧光染色(LysoTracker Red DND-99、吖啶橙染色)和 Western blot 评估溶酶体功能,来描述胃癌细胞中的自噬特征。使用 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴盐(MTT)检测 CEP、自噬抑制剂(氯喹[CQ]和 3-甲基腺嘌呤[3MA])和化疗药物(阿霉素[DOX]和顺铂[CIS])的细胞毒性,细胞集落形成和荧光染色技术(H2DCFDA、二氢乙锭和 JC-1 染色)。在 615 只小鼠模型中测试 CEP 与自噬抑制剂的相互作用,并通过准确的 16S 绝对定量测序确定肠道微生物群的变化。通过分子对接、RNA 测序、生物信息学分析、转染技术和 Western blot 验证 TRIB3-FOXO3-FOXM1 信号通路和自噬调节靶点。

结果

CEP 阻断了胃癌细胞中的自噬通量,而不影响溶酶体功能。作为一种新型自噬抑制剂,CEP 可以与常规自噬抑制剂(CQ 和 3MA)结合,阻断细胞内自噬,从而抑制胃癌的生长。在此过程中,观察到肠道微生物群发生变化,包括 Odoribacterium、Erysipelatoclostridium 和 ParaPrevotella 水平降低,Ileibacterium、Enterorhabdus 和 Bifidobacterium 水平升高。此外,CEP 与化疗药物联合使用时,协同抑制胃癌的生长。机制上,发现 TRIB3-FOXO3-FOXM1 信号轴参与了 CEP 联合自噬抑制剂和化疗药物抑制胃癌的过程,从而介导细胞凋亡。

结论

本研究将 TRIB3-FOXO3-FOXM1 轴与化疗疗效联系起来。我们的研究结果表明,CEP 通过调节 FOXO3-FOXM1 轴来抑制自噬。当与化疗药物(DOX 和 CIS)联合使用时,CEP 作为自噬抑制剂,可限制 TRIB3 蛋白的表达,从而调节 FOXO3-FOXM1 轴,增强其抑制胃癌生长的能力。这些发现可能有助于改善胃癌患者的预后。此外,这些结果丰富了自噬抑制如何增强临床癌症治疗效果的基本理解,并为 CEP 作为抗肿瘤药物的作用机制提供了新的见解,从而探索其在临床应用中的价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验