Suppr超能文献

脓毒症住院患者血清阴离子间隙轨迹与死亡率之间的关联:MIMIC-IV数据库分析

Association between serum anion gap trajectory and mortality in hospitalized patients with sepsis: an analysis of the MIMIC-IV database.

作者信息

Jing Lijuan, Shi Xiaopeng, Xu Lijun, Zhao Xiangmei, Li Faliang, Qin Lijie

机构信息

Department of Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, China.

出版信息

Front Endocrinol (Lausanne). 2025 Aug 1;16:1578078. doi: 10.3389/fendo.2025.1578078. eCollection 2025.

Abstract

BACKGROUND

Sepsis remains a leading cause of mortality in intensive care units (ICUs), with high morbidity and healthcare costs worldwide. The serum anion gap (AG), a marker of metabolic acidosis, has been associated with adverse outcomes in various critical illnesses. However, the prognostic value of longitudinal AG trajectories in sepsis remains underexplored. This study explored the link between dynamic AG trajectories and all-cause mortality in critically ill septic patients.

METHODS

A retrospective cohort study utilized data from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. Adult patients meeting Sepsis-3 criteria for sepsis were included. Group-based trajectory modeling was used to identify AG trajectories during the initial five days of ICU admission. Patients were classified into three trajectory groups: normal-level-stable trajectory (Class 1), high-level-decline trajectory (Class 2), and progressive acidosis trajectory (Class 3). Cox proportional hazards models evaluated the link between AG trajectories and ICU/hospital mortality, controlling for demographic, laboratory, and clinical severity factors. Subgroup and sensitivity analyses were performed to validate the findings.

RESULTS

Among 6,110 septic patients, three distinct AG trajectory groups were identified. Patients in Class 3 (decreasing high AG) had the highest mortality, with ICU mortality of 30.61% and hospital mortality of 35.85%, compared to Class 1 (ICU mortality: 14.46%, hospital mortality: 19.41%) and Class 2 (ICU mortality: 21.88%, hospital mortality: 31.88%). In fully adjusted models, Class 3 exhibited a significantly increased risk of ICU mortality [HR=1.72, (95% CI 1.43-2.07), P<0.001] and hospital mortality [HR=1.64, (95% CI 1.39-1.94), P<0.001] relative to Class 1. Subgroup analysis revealed a significant interaction between AG trajectories and heart failure status. Sensitivity analysis excluding patients with malignancies confirmed the robustness of the findings.

CONCLUSION

Continuous monitoring of AG levels is crucial for risk assessment and personalized treatment, as rising AG levels significantly increase mortality risk. These findings underscore the potential of AG trajectories as a dynamic biomarker to improve sepsis management and patient outcomes.

摘要

背景

脓毒症仍然是重症监护病房(ICU)患者死亡的主要原因,在全球范围内发病率高且医疗成本高昂。血清阴离子间隙(AG)作为代谢性酸中毒的一个指标,与各种危重病的不良预后相关。然而,脓毒症中AG动态变化轨迹的预后价值仍未得到充分探索。本研究探讨了危重症脓毒症患者动态AG轨迹与全因死亡率之间的联系。

方法

一项回顾性队列研究利用了重症监护医学信息数据库IV(MIMIC-IV)的数据。纳入符合脓毒症3标准的成年患者。基于组的轨迹模型用于识别ICU入院最初五天内的AG轨迹。患者被分为三个轨迹组:正常水平稳定轨迹(第1类)、高水平下降轨迹(第2类)和进行性酸中毒轨迹(第3类)。Cox比例风险模型评估AG轨迹与ICU/医院死亡率之间的联系,并对人口统计学、实验室和临床严重程度因素进行控制。进行亚组分析和敏感性分析以验证研究结果。

结果

在6110例脓毒症患者中,识别出三个不同的AG轨迹组。第3类(高AG下降)患者的死亡率最高,ICU死亡率为30.61%,医院死亡率为35.85%,而第1类(ICU死亡率:14.46%,医院死亡率:19.41%)和第2类(ICU死亡率:21.88%,医院死亡率:31.88%)。在完全调整模型中,相对于第1类,第3类患者的ICU死亡率[HR=1.72,(95%CI 1.43-2.07),P<0.001]和医院死亡率[HR=1.64,(95%CI 1.39-1.94),P<0.001]显著增加。亚组分析显示AG轨迹与心力衰竭状态之间存在显著交互作用。排除恶性肿瘤患者的敏感性分析证实了研究结果的稳健性。

结论

持续监测AG水平对于风险评估和个性化治疗至关重要,因为AG水平升高会显著增加死亡风险。这些发现强调了AG轨迹作为一种动态生物标志物改善脓毒症管理和患者预后的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3018/12353743/b3621e887699/fendo-16-1578078-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验