Ichikawa Shota, Kondo Yohan, Yokoyama Satoshi
Department of Radiological Technology, Graduate School of Health Sciences, Niigata University, 2-746 Asahimachi-dori, Chuo-ku, Niigata, 951-8518, Japan.
Institute for Research Administration, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181, Japan.
Int J Comput Assist Radiol Surg. 2025 Aug 18. doi: 10.1007/s11548-025-03500-3.
Computed tomography perfusion (CTP) imaging for acute ischemic stroke relies on accurately identifying hypoperfused brain tissue to guide treatment decisions. However, deconvolution-based methods often suffer from variability in perfusion parameters and lesion volumes across different software. This study evaluated the feasibility of temporal fractal analysis, specifically, time series-derived fractal dimension (FD) using the Higuchi method, as a biomarker for detecting hypoperfused brain tissue.
Fractal analysis was applied to voxel-wise time-series data from both simulated phantom datasets and 149 CTP images from the publicly available Ischemic Stroke Lesion Segmentation (ISLES) 2024 dataset. FD was calculated using optimized parameters determined through the phantom study. In the patient study, the ischemic core was defined by follow-up MRI, and the penumbra was defined as tissue with Tmax > 6 s. FD values were statistically compared between core, penumbra, and normal tissue. Diagnostic performance was assessed using receiver operating characteristic (ROC) analysis.
In the phantom study, FD showed a strong correlation (ρ > 0.9) with true cerebral blood flow (CBF) across all cerebral blood volume (CBV) values when the tuning parameter k was optimized based on the number of CTP frames. In the patient study, FD differed significantly across tissue types (p < 0.001). For penumbra versus normal classification, FD achieved an AUC of 0.732, outperforming CBF and CBV (p < 0.001). In core versus penumbra classification, FD showed the highest AUC of 0.641 among all metrics.
Time series-derived FD offers a promising approach to characterizing perfusion abnormalities in stroke, with potential as a complementary metric to conventional CTP parameters.
急性缺血性卒中的计算机断层扫描灌注(CTP)成像依赖于准确识别灌注不足的脑组织以指导治疗决策。然而,基于去卷积的方法在不同软件之间的灌注参数和病变体积上常常存在差异。本研究评估了时间分形分析的可行性,具体而言,使用Higuchi方法从时间序列得出的分形维数(FD)作为检测灌注不足脑组织的生物标志物。
将分形分析应用于模拟体模数据集的体素级时间序列数据以及来自公开可用的缺血性卒中病变分割(ISLES)2024数据集的149幅CTP图像。使用通过体模研究确定的优化参数计算FD。在患者研究中,缺血核心由后续的磁共振成像(MRI)定义,半暗带定义为Tmax > 6秒的组织。对核心、半暗带和正常组织之间的FD值进行统计学比较。使用受试者操作特征(ROC)分析评估诊断性能。
在体模研究中,当根据CTP帧数优化调整参数k时,FD在所有脑血容量(CBV)值下与真实脑血流量(CBF)显示出强相关性(ρ > 0.9)。在患者研究中,FD在不同组织类型之间存在显著差异(p < 0.001)。对于半暗带与正常组织的分类,FD的曲线下面积(AUC)为0.732,优于CBF和CBV(p < 0.001)。在核心与半暗带分类中,FD在所有指标中显示出最高的AUC,为0.641。
从时间序列得出的FD为表征卒中灌注异常提供了一种有前景的方法,有潜力作为传统CTP参数的补充指标。