Chen Xiangjun, Xu Jiahui, Zuo Peiqi, Li Yibo, Li Liyang, Zhao San
State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Henan Polytechnic University, Jiaozuo, 454003, China.
College of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China.
J Mol Model. 2025 Aug 18;31(9):249. doi: 10.1007/s00894-025-06466-w.
In coal mine spray dust suppression, conventional studies on individual surfactants or surfactant mixtures often fail to achieve optimal coal wettability enhancement. This study innovatively introduces SiO₂ nanoparticles and demonstrates through simulations that the nanoparticle-surfactant composite system substantially enhances coal wettability. Electrostatic potential analysis indicates that the modified nanoparticle molecules formed by surfactant-grafted nanoparticles are more likely to form stable structures with coal molecules, enabling the nanoparticles to be better fixed on the coal molecules and establish a stable adsorption configuration. When the surfactant-grafted composite structure adsorbs onto the coal surface, it significantly enhances water molecular diffusivity, facilitates increased hydrogen bond formation with the composite surface, and substantially strengthens the interaction energy between coal and surfactants. Moreover, nanoparticle incorporation leads to noticeable thickening of the coal wetting layer and a marked increase in water molecule density at the interface. The results conclusively demonstrate that this composite structure enhances coal wettability through three synergistic mechanisms: interface optimization, hydrogen bond reinforcement, and water molecule diffusion enhancement.
This study innovatively employed molecular dynamics simulation methods to construct two adsorption systems-"water-surfactant-coal" and "water-nanoparticle-grafted surfactant-coal"-based on the Wiser coal molecular model. Through comprehensive analysis of key parameters including adsorption configurations, interaction energies, relative concentration profiles, hydrogen bond counts, water molecule diffusion behaviors, and detailed examination of surface electrostatic potentials of various components, we conducted comparative studies on the wetting behaviors of sodium dodecyl sulfate (SDS), alcohol ethoxylate (AEO), and their nanoparticle-composite systems on coal. This investigation successfully revealed the microscopic mechanism by which composite structures enhance coal wettability at the molecular level.
在煤矿喷雾降尘中,传统上对单一表面活性剂或表面活性剂混合物的研究往往无法实现最佳的煤润湿性增强效果。本研究创新性地引入了二氧化硅纳米颗粒,并通过模拟表明纳米颗粒 - 表面活性剂复合体系能显著增强煤的润湿性。静电势分析表明,由表面活性剂接枝纳米颗粒形成的改性纳米颗粒分子更有可能与煤分子形成稳定结构,使纳米颗粒能更好地固定在煤分子上并建立稳定的吸附构型。当表面活性剂接枝复合结构吸附到煤表面时,它显著提高了水分子扩散率,促进了与复合表面形成更多氢键,并大幅增强了煤与表面活性剂之间的相互作用能。此外,纳米颗粒的加入导致煤润湿层明显增厚,界面处水分子密度显著增加。结果确凿地表明,这种复合结构通过界面优化、氢键强化和水分子扩散增强这三种协同机制增强了煤的润湿性。
本研究创新性地采用分子动力学模拟方法,基于Wiser煤分子模型构建了两个吸附体系——“水 - 表面活性剂 - 煤”和“水 - 纳米颗粒接枝表面活性剂 - 煤”。通过对吸附构型、相互作用能、相对浓度分布、氢键数量、水分子扩散行为等关键参数的综合分析,以及对各组分表面静电势的详细考察,我们对十二烷基硫酸钠(SDS)、醇乙氧基化物(AEO)及其纳米颗粒复合体系在煤上的润湿行为进行了对比研究。这项研究成功揭示了复合结构在分子水平上增强煤润湿性的微观机制。