Suppr超能文献

利用多种液-液相分离模式预测儿童急性髓系白血病的预后和免疫治疗。

Leveraging diverse liquid-liquid phase separation patterns to predict the prognosis and immunotherapy of pediatric acute myeloid leukemia.

作者信息

Kong Min, Yang Yezhen, Wu Zhixiang, Li Ying, Kang Zhijuan, Zhao Qin, Chang Huan, Yang Zuocheng

机构信息

Department of Pediatrics, the Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China.

Department of Ophthalmology, the Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China.

出版信息

BMC Cancer. 2025 Aug 18;25(1):1326. doi: 10.1186/s12885-025-14718-4.

Abstract

BACKGROUND

Despite improvements in 5-year survival rates for pediatric acute myeloid leukemia (P-AML) over recent decades, the relapse rate remains high. This challenge is compounded by the absence of reliable prognostic biomarkers, which limits the effectiveness of predictive, preventive, and personalized approaches in P-AML management. Emerging evidence has indicated that the aberrant liquid-liquid phase separation (LLPS) can alter the spatiotemporal coordination of biomolecular condensates, thereby contributing to tumorigenesis and progression. However, the role of LLPS in P-AML remains unclear.

MATERIALS AND METHODS

A comprehensive multi-omics analysis of LLPS-related genes in P-AML was conducted using both bulk RNA sequencing and single-cell RNA sequencing data. Based on LLPS gene expression profiles, a prognostic risk model was developed through Kaplan-Meier survival analysis, least absolute shrinkage and selection operator (LASSO) regression, stepAIC, and Cox regression analyses. This model aims to predict patient prognosis, immune cell infiltration patterns, responses to immunotherapy, and sensitivity to targeted therapies in P-AML. Additionally, a nomogram integrating the risk model with clinical characteristics was constructed to enhance clinical applicability.

RESULTS

The LLPS-related risk model was developed as an independent prognostic indicator in the TARGET-AML cohort and validated in the external cohorts. Results demonstrated that patients in the low-risk group had significantly better overall survival than those in the high-risk group. In addition, a nomogram was constructed to enhance the clinical applicability of the risk model. Integrated analysis of bulk and single-cell transcriptome data revealed that the LLPS-related signature correlated with cancer hallmarks, immune checkpoint genes, and key components of the tumor microenvironment. Distinct drug sensitivities were observed between risk groups, with P-AML patients exhibiting varied responses to Docetaxel, Paclitaxel, and Sunitinib.

CONCLUSION

In summary, we developed a robust and effective risk model for predicting prognosis, tumor microenvironment characteristics, and responses to immunotherapy and targeted therapies in P-AML. This model offers valuable insights for advancing personalized and precision medicine approaches in P-AML treatment strategies.

摘要

背景

尽管近几十年来小儿急性髓系白血病(P-AML)的5年生存率有所提高,但复发率仍然很高。由于缺乏可靠的预后生物标志物,这一挑战更加复杂,这限制了P-AML管理中预测、预防和个性化方法的有效性。新出现的证据表明,异常的液-液相分离(LLPS)可改变生物分子凝聚物的时空协调,从而促进肿瘤发生和进展。然而,LLPS在P-AML中的作用仍不清楚。

材料和方法

使用批量RNA测序和单细胞RNA测序数据对P-AML中LLPS相关基因进行全面的多组学分析。基于LLPS基因表达谱,通过Kaplan-Meier生存分析、最小绝对收缩和选择算子(LASSO)回归、stepAIC和Cox回归分析建立了预后风险模型。该模型旨在预测P-AML患者的预后、免疫细胞浸润模式、对免疫治疗的反应以及对靶向治疗的敏感性。此外,构建了一个将风险模型与临床特征相结合的列线图,以提高临床适用性。

结果

LLPS相关风险模型在TARGET-AML队列中作为独立的预后指标被开发出来,并在外部队列中得到验证。结果表明,低风险组患者的总生存期明显优于高风险组患者。此外,构建了一个列线图以提高风险模型的临床适用性。对批量和单细胞转录组数据的综合分析表明,LLPS相关特征与癌症特征、免疫检查点基因和肿瘤微环境的关键成分相关。在风险组之间观察到不同的药物敏感性,P-AML患者对多西他赛、紫杉醇和舒尼替尼表现出不同的反应。

结论

总之,我们开发了一个强大而有效的风险模型,用于预测P-AML的预后、肿瘤微环境特征以及对免疫治疗和靶向治疗的反应。该模型为推进P-AML治疗策略中的个性化和精准医学方法提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce79/12359890/053d4c6b100c/12885_2025_14718_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验