Gao Weihao, Deng Zhuo, Gong Zheng, Jiang Ziyi, Ma Lan
Tsinghua International Graduate School, Tsinghua University, Shenzhen, 518055, China.
Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
Diabetol Metab Syndr. 2025 Aug 18;17(1):338. doi: 10.1186/s13098-025-01920-4.
BACKGROUND: Insulin resistance is a key precursor to diabetes and increases the risk of cardiovascular diseases. Traditional assessment methods rely on multiple invasive tests. Developing an AI model based on minimally invasive tests, especially using only fasting blood glucose as the invasive test, can promote health monitoring in non-diabetic populations, particularly for frequent routine checks. OBJECTIVE: This study aims to develop an AI-driven model that uses only fasting blood glucose as the invasive measure to predict insulin resistance in non-diabetic populations. The goal is to facilitate health monitoring through simple, minimally invasive tests. METHODS: We selected simple and accessible input features, including age, gender, height, weight, pulse, blood pressure, waist circumference, and fasting blood glucose. Data from the National Health and Nutrition Examination Survey (NHANES, 1999-2020) were used to construct four AI-based prediction models, which were validated using data from the China Health and Retirement Longitudinal Study (CHARLS, 2015). These models were based on three commonly used insulin resistance (IR) indicators: HOMA-IR, TyG, and METS-IR. Additionally, we used SHAP values to interpret the contributions of these features to the predictions. RESULTS: The CatBoost algorithm performed excellently in classification tasks for insulin resistance. For numerical prediction of the METS-IR index, neural networks, particularly TabKANet, demonstrated superior performance in cross-dataset validation. In the NHANES test set, the AUC values for predicting insulin resistance were 0.8596 (HOMA-IR index) and 0.7777 (TyG index), with an external validation AUC of 0.7442 for the TyG index. For METS-IR prediction, our model achieved AUC values of 0.9731 (internal) and 0.9591 (external). Additionally, the AI-driven model for predicting METS-IR had RMSE values of 3.2643 (internal) and 3.057 (external). SHAP analysis identified waist circumference as a key predictor of insulin resistance, highlighting its importance in early diabetes and cardiovascular disease prediction. CONCLUSION: This study successfully developed a minimally invasive insulin resistance prediction model that relies solely on fasting blood glucose. The AI-driven models demonstrated robust performance across multiple insulin resistance assessment indicators, particularly in predicting the METS-IR index. These findings highlight the significant potential of AI in enhancing early detection and monitoring of insulin resistance in non-diabetic populations, thereby improving health monitoring strategies.
背景:胰岛素抵抗是糖尿病的关键先兆,并会增加心血管疾病的风险。传统的评估方法依赖于多项侵入性检查。开发一种基于微创检查的人工智能模型,特别是仅使用空腹血糖作为侵入性检查手段,能够促进非糖尿病人群的健康监测,尤其是对于频繁的常规检查。 目的:本研究旨在开发一种人工智能驱动的模型,该模型仅使用空腹血糖作为侵入性测量指标来预测非糖尿病人群的胰岛素抵抗。目标是通过简单、微创的检查来促进健康监测。 方法:我们选择了简单且易于获取的输入特征,包括年龄、性别、身高、体重、脉搏、血压、腰围和空腹血糖。使用来自国家健康与营养检查调查(NHANES,1999 - 2020)的数据构建了四个基于人工智能的预测模型,并使用中国健康与养老追踪调查(CHARLS,2015)的数据进行了验证。这些模型基于三个常用的胰岛素抵抗(IR)指标:稳态模型评估胰岛素抵抗(HOMA - IR)、甘油三酯与血糖乘积指数(TyG)和代谢综合征胰岛素抵抗评分(METS - IR)。此外,我们使用SHAP值来解释这些特征对预测的贡献。 结果:CatBoost算法在胰岛素抵抗的分类任务中表现出色。对于METS - IR指数的数值预测,神经网络,特别是TabKANet,在跨数据集验证中表现出卓越的性能。在NHANES测试集中,预测胰岛素抵抗时,稳态模型评估胰岛素抵抗(HOMA - IR)指数的曲线下面积(AUC)值为0.8596,甘油三酯与血糖乘积指数(TyG)指数为0.7777,甘油三酯与血糖乘积指数(TyG)指数的外部验证AUC为0.7442。对于代谢综合征胰岛素抵抗评分(METS - IR)预测,我们模型的AUC值分别为内部0.9731和外部0.9591。此外,预测代谢综合征胰岛素抵抗评分(METS - IR)的人工智能驱动模型内部均方根误差(RMSE)值为3.2643,外部为3.057。SHAP分析确定腰围是胰岛素抵抗的关键预测指标,突出了其在早期糖尿病和心血管疾病预测中的重要性。 结论:本研究成功开发了一种仅依赖空腹血糖的微创胰岛素抵抗预测模型。人工智能驱动的模型在多个胰岛素抵抗评估指标上表现出强大的性能,特别是在预测代谢综合征胰岛素抵抗评分(METS - IR)指数方面。这些发现突出了人工智能在增强非糖尿病人群胰岛素抵抗早期检测和监测方面的巨大潜力,从而改善健康监测策略
J Periodontol. 2025-7-8
JAMA Netw Open. 2024-6-3
Cardiovasc Diabetol. 2023-11-22