Suppr超能文献

使用主成分分析和k近邻法提取和评估大鼠脑电图活动分布的方案

Protocol for extracting and evaluating activity distributions in rat electrocorticograms with principal component analysis and k-nearest neighbor.

作者信息

Mellbin Astrid, Rongala Udaya, Bengtsson Fredrik

机构信息

Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Biomedical Centre, Lund University, SE-223 62 Lund, Sweden.

Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Biomedical Centre, Lund University, SE-223 62 Lund, Sweden.

出版信息

STAR Protoc. 2025 Aug 18;6(3):104041. doi: 10.1016/j.xpro.2025.104041.

Abstract

Principal component analysis (PCA) and k-nearest neighbor (kNN) can be applied to extract and compare activity distributions from electrocorticogram (ECoG) signals across recorded neural activity. Here, we present a protocol for recording ECoG activity from the neocortex of rats and applying PCA and kNN on the recorded data. This protocol allows for comparison between different types of cortical activity in a multidimensional space. For complete details on the use and execution of this protocol, please refer to Mellbin et al..

摘要

主成分分析(PCA)和k近邻算法(kNN)可用于从跨记录神经活动的皮层脑电图(ECoG)信号中提取并比较活动分布。在此,我们展示了一种从大鼠新皮层记录ECoG活动并将PCA和kNN应用于记录数据的方案。该方案允许在多维空间中比较不同类型的皮层活动。有关此方案的使用和执行的完整详细信息,请参考梅尔宾等人的研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验