Suppr超能文献

使用主成分分析和k近邻法提取和评估大鼠脑电图活动分布的方案

Protocol for extracting and evaluating activity distributions in rat electrocorticograms with principal component analysis and k-nearest neighbor.

作者信息

Mellbin Astrid, Rongala Udaya, Bengtsson Fredrik

机构信息

Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Biomedical Centre, Lund University, SE-223 62 Lund, Sweden.

Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Biomedical Centre, Lund University, SE-223 62 Lund, Sweden.

出版信息

STAR Protoc. 2025 Aug 18;6(3):104041. doi: 10.1016/j.xpro.2025.104041.

Abstract

Principal component analysis (PCA) and k-nearest neighbor (kNN) can be applied to extract and compare activity distributions from electrocorticogram (ECoG) signals across recorded neural activity. Here, we present a protocol for recording ECoG activity from the neocortex of rats and applying PCA and kNN on the recorded data. This protocol allows for comparison between different types of cortical activity in a multidimensional space. For complete details on the use and execution of this protocol, please refer to Mellbin et al..

摘要

主成分分析(PCA)和k近邻算法(kNN)可用于从跨记录神经活动的皮层脑电图(ECoG)信号中提取并比较活动分布。在此,我们展示了一种从大鼠新皮层记录ECoG活动并将PCA和kNN应用于记录数据的方案。该方案允许在多维空间中比较不同类型的皮层活动。有关此方案的使用和执行的完整详细信息,请参考梅尔宾等人的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验