Suppr超能文献

基于预后营养指数和炎症细胞因子分析构建肝衰竭患者并发感染的预测模型。

Construction of a predictive model for concurrent infection in liver failure patients based on prognostic nutritional index and inflammatory cytokine analysis.

作者信息

Yang Hong, Zhang Bin, Yu Chun, Zhu Xiao

机构信息

Department of Infectious Diseases, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.

Department of Gastrointestinal Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.

出版信息

BMC Gastroenterol. 2025 Aug 19;25(1):598. doi: 10.1186/s12876-025-04054-z.

Abstract

OBJECTIVE

This study aimed to explore the relationship between the Prognostic Nutritional Index (PNI, a composite indicator of albumin and lymphocyte count reflecting nutritional and immune status) and inflammatory cytokines in predicting infections among liver failure patients, and to construct a predictive model based on these indicators.

METHODS

A retrospective analysis was conducted on 163 patients with liver failure admitted to our hospital between January 2020 and December 2023. Patients were categorized into an Infection group and a Non-infection group based on the presence of concurrent infections. Clinical data and laboratory parameters were collected and compared between the two groups. Indicators with significant differences were evaluated for collinearity. Non-collinear factors were selected for a logistic regression model to identify infection predictors. Statistically significant variables were used to create a risk prediction nomogram using R software, with internal validation performed.

RESULTS

Statistically Significant differences (P < 0.05) were observed between the two groups in terms of C-reactive protein (CRP), soluble triggering receptor expressed on myeloid cells-1 (sTREM-1), Systemic Inflammatory Response Index (SIRI, a novel inflammatory biomarker), PNI, and Acute Physiology and Chronic Health Evaluation II (APACHE II). No collinearity was detected1 (VIF ≤ 10, tolerance ≥ 0.1). Logistic regression analysis identified CRP, sTREM-1, SIRI, and APACHE II as risk factors for infection (OR > 1, P < 0.05), while PNI was a protective factor (OR < 1, P < 0.05). These five variables were incorporated into a nomogram-based predictive model. The model demonstrated excellent performance, with an area under the ROC curve (AUC) of 0.960 (95% CI: 0.927-0.993), indicating high predictive accuracy.

CONCLUSION

CRP, sTREM-1, SIRI, PNI, and APACHE II scores are independent predictors of infection in liver failure patients. These indicators can be used to identify high-risk populations, providing a theoretical basis for implementing appropriate clinical interventions.

摘要

目的

本研究旨在探讨预后营养指数(PNI,白蛋白和淋巴细胞计数的综合指标,反映营养和免疫状态)与炎症细胞因子在预测肝衰竭患者感染中的关系,并基于这些指标构建预测模型。

方法

对2020年1月至2023年12月期间我院收治的163例肝衰竭患者进行回顾性分析。根据是否并发感染将患者分为感染组和非感染组。收集两组的临床资料和实验室参数并进行比较。对有显著差异的指标进行共线性评估。选择非共线因素用于逻辑回归模型以识别感染预测因素。使用R软件将具有统计学意义的变量用于创建风险预测列线图,并进行内部验证。

结果

两组在C反应蛋白(CRP)、髓系细胞表面表达的可溶性触发受体-1(sTREM-1)、全身炎症反应指数(SIRI,一种新型炎症生物标志物)、PNI和急性生理与慢性健康状况评分系统II(APACHE II)方面存在统计学显著差异(P < 0.05)。未检测到共线性(方差膨胀因子≤10,容忍度≥0.1)。逻辑回归分析确定CRP、sTREM-1、SIRI和APACHE II为感染的危险因素(比值比>1,P < 0.05),而PNI为保护因素(比值比<1,P < 0.05)。将这五个变量纳入基于列线图的预测模型。该模型表现出色,ROC曲线下面积(AUC)为0.960(95%可信区间:0.927 - 0.993),表明预测准确性高。

结论

CRP、sTREM-1、SIRI、PNI和APACHE II评分是肝衰竭患者感染的独立预测因素。这些指标可用于识别高危人群,为实施适当的临床干预提供理论依据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验