Sun Xuefeng, Wang Zilin, Song Yuqing, Cong Deyu, Sun Shu, Zhang Xinye, Zhang Ye, Zhang Hongshi
Changchun University of Chinese Medicine, Changchun, China.
Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China.
BMC Public Health. 2025 Aug 19;25(1):2841. doi: 10.1186/s12889-025-24025-z.
Insomnia is a common complication in ischemic stroke convalescence (ISC) patients. While the interaction of clinical, psychological, and social factors remains unclear, developing a predictive model system is urgently needed. Currently, few studies have established insomnia risk prediction models.
To construct a decision tree model for insomnia risk among ISC patients based on the classification and regression tree algorithm.
Across-sectional study.
China.
The study enrolled 823 adult ISC patients between February 2023 and October 2024. Participants were recruited from stroke units in two tertiary hospitals in Jilin Province.
Following the TRIPOD+AI guidelines, we constructed a decision tree model utilizing data from the Pittsburgh Sleep Quality Index (PSQI), Fatigue Severity Scale (FSS), Social Support Scale (SSRS), and other assessment tools. Model validation encompassed 10-fold cross-validation, incorporating confusion matrix, ROC curves, calibration curve, and Brier scores. The model was trained on 623 patients and externally validated on an independent cohort of 200 cases.
The study revealed an insomnia prevalence of 37.72%camong ISC patients. Univariate analysis identified BMI, SAS, SSRS, FSS, SDS, and NIHSS as significant factors. The decision tree model delineated 24 pathways (depth = 6), with predictive contributions ranked as follows: SAS > SSRS > FSS > SDS > BMI > NIHSS, which were integrated into a nomogram. Internal validation exhibited robust predictive accuracy (90.4%), with a sensitivity of 0.96, specificity of 0.84, Youden index of 0.80, and F1 score of 0.89. The AUC was 0.96 (95% CI: 0.93-0.98; p < 0.001), indicating well-calibrated predictions (χ² = 9.36, p = 0.404). Brier scores were 0.06 for the training set and 0.08 for the validation set. External validation demonstrated an accuracy of 82%. The decision curve analysis demonstrated acceptable clinical utility.
This model demonstrates promise in forecasting insomnia among ISC patients. Anxiety and social support emerged as the most influential predictors, with fatigue, depression, BMI, and stroke severity collectively offering a comprehensive outlook for anticipating post-stroke insomnia. These results have implications for informing future strategies in managing insomnia. The model's applicability is moderately robust, necessitating additional refinement to accurately pinpoint insomnia.
失眠是缺血性中风恢复期(ISC)患者的常见并发症。虽然临床、心理和社会因素之间的相互作用尚不清楚,但迫切需要开发一种预测模型系统。目前,很少有研究建立失眠风险预测模型。
基于分类与回归树算法构建ISC患者失眠风险的决策树模型。
横断面研究。
中国。
本研究纳入了2023年2月至2024年10月期间的823例成年ISC患者。参与者来自吉林省两家三级医院的卒中单元。
遵循TRIPOD+AI指南,我们利用匹兹堡睡眠质量指数(PSQI)、疲劳严重程度量表(FSS)、社会支持量表(SSRS)和其他评估工具的数据构建了一个决策树模型。模型验证包括10倍交叉验证,纳入混淆矩阵、ROC曲线、校准曲线和Brier评分。该模型在623例患者上进行训练,并在200例独立队列中进行外部验证。
研究显示ISC患者失眠患病率为37.72%。单因素分析确定BMI、SAS、SSRS、FSS、SDS和NIHSS为显著因素。决策树模型描绘了24条路径(深度=6),预测贡献排名如下:SAS>SSRS>FSS>SDS>BMI>NIHSS,这些因素被整合到一个列线图中。内部验证显示出强大的预测准确性(90.4%),敏感性为0.96,特异性为0.84,约登指数为0.80,F1评分为0.89。AUC为0.96(95%CI:0.93-0.98;p<0.001),表明预测校准良好(χ²=9.36,p=0.404)。训练集的Brier评分为0.06,验证集为0.08。外部验证显示准确率为82%。决策曲线分析显示出可接受的临床实用性。
该模型在预测ISC患者失眠方面显示出前景。焦虑和社会支持是最有影响力的预测因素,疲劳、抑郁、BMI和中风严重程度共同为预测中风后失眠提供了全面的视角。这些结果对指导未来失眠管理策略具有启示意义。该模型的适用性适中,需要进一步完善以准确识别失眠。