Hozo Iztok, Guyatt Gordon, Djulbegovic Benjamin
Department of Mathematics, Indiana University Northwest, Gary, Indiana, USA.
Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.
J Eval Clin Pract. 2025 Aug;31(5):e70254. doi: 10.1111/jep.70254.
RATIONALE, AIMS, AND OBJECTIVES: We have recently succeeded in integrating evidence estimation with decision-analytical frameworks, thereby addressing a major challenge in advancing the science of evidence-based medicine (EBM) and clinical practice guidelines. However, the primary output of our analysis was expressed as net differences in expected utility (ΔEU) between competing treatment interventions. Although expected utility is a standard decision-analytic metric, it is not intuitively understood by most clinicians. Here, we demonstrate how ΔEU can be converted into gains in quality-adjusted life years (QALYs) and life expectancy (LE).
We begin with GRADE (Grading of Recommendations Assessment, Development, and Evaluation) Summary of Findings (SoF) tables-the primary outputs of systematic reviews that underpin guideline recommendations-to generate ΔEU, which we subsequently convert into QALY and LE gains using the DEALE (Declining Exponential Approximation of Life Expectancy) method. We also integrate patients' values and preferences by relating minimal important differences (MIDs)-the smallest change in an outcome that patients perceive as important enough to justify a change in management-to relative values, which reflect the preference (or weight) assigned to avoiding a specific health outcome compared to the worst outcome (mortality). To convert a deterministic ΔEU model into a probabilistic one, we employ Monte Carlo simulation to assess the credibility of recommendations under the evidentiary uncertainty included in the SoF tables. We also provide a method to assess the impact of the certainty of evidence (CoE) on the robustness of the results.
We developed a user-friendly, Excel-based calculator for converting evidence-based SoF tables into ΔEU, and subsequently into QALY and LE gains. We illustrate our methods by comparing the effects of short-term versus indefinite anticoagulation for the prevention of recurrent venous thromboembolism. The complete analysis can be performed in approximately 5-10 min.
We extend our methods to link estimation metrics commonly used in the EBM field with decision-analytic metrics such as expected utility, QALY, and LE. We present a user-friendly calculator that integrates all key domains underpinning contemporary guideline development.
原理、目的和目标:我们最近成功地将证据评估与决策分析框架相结合,从而解决了推进循证医学(EBM)科学和临床实践指南过程中的一个重大挑战。然而,我们分析的主要输出是以相互竞争的治疗干预措施之间预期效用的净差异(ΔEU)来表示的。尽管预期效用是一种标准的决策分析指标,但大多数临床医生并不能直观地理解它。在此,我们展示了如何将ΔEU转换为质量调整生命年(QALY)和预期寿命(LE)的增益。
我们从推荐分级评估、制定与评价(GRADE)的结果总结(SoF)表开始——这是支持指南推荐的系统评价的主要输出——以生成ΔEU,随后我们使用预期寿命的指数衰减近似(DEALE)方法将其转换为QALY和LE增益。我们还通过将最小重要差异(MID)——患者认为足以证明管理方式改变合理的结果的最小变化——与相对值相关联,来整合患者的价值观和偏好,相对值反映了与最差结果(死亡率)相比,为避免特定健康结果所赋予的偏好(或权重)。为了将确定性的ΔEU模型转换为概率性模型,我们采用蒙特卡洛模拟来评估SoF表中包含的证据不确定性下推荐的可信度。我们还提供了一种方法来评估证据确定性(CoE)对结果稳健性的影响。
我们开发了一个基于Excel的用户友好型计算器,用于将基于证据的SoF表转换为ΔEU,随后再转换为QALY和LE增益。我们通过比较短期与长期抗凝预防复发性静脉血栓栓塞的效果来说明我们的方法。完整的分析大约可以在5 - 10分钟内完成。
我们扩展了我们的方法,将EBM领域常用的评估指标与决策分析指标(如预期效用、QALY和LE)联系起来。我们展示了一个用户友好型计算器,它整合了支撑当代指南制定的所有关键领域。