Suppr超能文献

用于增强高压锂金属电池循环稳定性的环状硫醚电解质添加剂的双界面调控

Dual-Interface Regulation of Cyclic Thioether Electrolyte Additives for Enhancing the Cycling Stability of High-Voltage Lithium Metal Batteries.

作者信息

Xiong Xiaosong, Zhang Wenjie, Ma Yuan, Zhong Yiren, Cheng Xin-Bing, He Jiarui, Zhu Zhi, Wang Faxing, Peng Shengjie, Wang Yong, Wang Tao, Wu Yuping

机构信息

School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 211189, P. R. China.

出版信息

Small. 2025 Aug 20:e07802. doi: 10.1002/smll.202507802.

Abstract

The development of high-energy-density lithium metal batteries (LMBs) using carbonate electrolytes is severely hindered by unstable interfacial chemistry, leading to uncontrolled lithium dendrite growth and rapid performance degradation. Given that the electrode/electrolyte interface property is highly dependent on the interface interactions, this work introduces 1,4-dithiane (1,4-DH), an environmentally benign cyclic thioether, as a multifunctional additive for stabilizing electrode-electrolyte interfaces in conventional carbonate electrolytes without fluorinated solvents. The 1,4-DH additive exhibits preferentially adsorption on both Li metal anodes and NCM811 (LiNiCoMnO) cathodes, displacing solvent molecules from electrode surfaces to suppress solvent decomposition while driving localized PF enrichment at the electrode interfaces via a robust binding interaction. The additive undergoes preferential self-decomposition during cycling to form sulfur-rich SEI (solid-electrolyte-interphase)/CEI (cathode electrolyte interphase), promoting synergistic decomposition of PF simultaneously to form inorganic-dominated interphases (LiF, LiS). As a result, the lithium iron phosphate full cell achieves 87.54% capacity retention and 99.99% average coulombic efficiency over 3000 cycles. Crucially, 1,4-DH stabilizes NCM811 cathodes against cracking, enabling prolonged cycle stability at 4.8 V. The additive further demonstrates exceptional adaptability under extreme conditions (-10 and 60 °C) and practical pouch cell configurations. This work provides a practical strategy for durable LMBs via non-fluorinated electrolyte engineering.

摘要

使用碳酸盐电解质的高能量密度锂金属电池(LMBs)的发展受到不稳定界面化学的严重阻碍,导致锂枝晶生长失控和性能迅速退化。鉴于电极/电解质界面性质高度依赖于界面相互作用,这项工作引入了1,4 - 二硫烷(1,4 - DH),一种环境友好的环状硫醚,作为一种多功能添加剂,用于在不含氟化溶剂的传统碳酸盐电解质中稳定电极 - 电解质界面。1,4 - DH添加剂优先吸附在锂金属阳极和NCM811(LiNiCoMnO)阴极上,从电极表面取代溶剂分子以抑制溶剂分解,同时通过强大的结合相互作用在电极界面驱动局部PF富集。该添加剂在循环过程中优先进行自分解,形成富含硫的固体电解质界面(SEI)/阴极电解质界面(CEI),同时促进PF的协同分解以形成无机主导的界面(LiF、LiS)。结果,磷酸铁锂全电池在3000次循环中实现了87.54%的容量保持率和99.99%的平均库仑效率。至关重要的是,1,4 - DH使NCM811阴极稳定,防止开裂,从而在4.8 V下实现延长的循环稳定性。该添加剂在极端条件(-10和60°C)和实际软包电池配置下进一步表现出卓越的适应性。这项工作通过非氟化电解质工程为耐用的LMBs提供了一种实用策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验