Suppr超能文献

使用随机森林预测互动艺术中的情感反应:一种基于生成美学的模型。

Predicting emotional responses in interactive art using Random Forests: a model grounded in enactive aesthetics.

作者信息

Chen Xiaowei, Ibrahim Zainuddin, Aziz Azlan Abdul

机构信息

College of Arts, Zhejiang Shuren University, Hangzhou, China.

College of Creative Arts, Universiti Teknologi MARA, Shah Alam, Malaysia.

出版信息

Front Psychol. 2025 Aug 4;16:1609103. doi: 10.3389/fpsyg.2025.1609103. eCollection 2025.

Abstract

INTRODUCTION

Interactive installation art offers immersive and participatory environments that elicit complex and multidimensional emotional experiences-encompassing sensorimotor engagement, affective resonance, and cognitive reflection. However, these emotional responses' inherently dynamic, subjective, and often pre-reflective nature poses significant challenges to their systematic prediction and computational modeling.

METHODS

To address these challenges, the present study introduces an interpretable machine learning framework grounded in the Random Forest (RF) algorithm, which provides a balanced trade-off between predictive performance and model transparency, thereby aligning with the needs of theory-driven emotion research. Based on 390 valid questionnaire responses, emotional responses were operationalized along five distinct dimensions: bodily changes, sensory engagement, emotional connection, cognitive reflection, and active personalization. Predictor variables encompassed sensory stimuli, multimodal interactional features, and immersive environmental cues. Model evaluation was conducted using cross-validation and held-out test sets, applying classification and regression metrics to assess performance.

RESULTS

The RF model demonstrated the highest predictive accuracy in the domains of cognitive reflection (F1 = 0.746, accuracy = 0.769) and active personalization (F1 = 0.673, accuracy = 0.705), suggesting that these cognitively mediated responses exhibit greater consistency and learnability across participants. In contrast, bodily responses proved substantially less predictable (F1 = 0.379, accuracy = 0.397), likely due to their idiosyncratic, embodied, and non-verbal nature, which may not be adequately captured by self-report measures alone.

DISCUSSION

These differential results underscore the relative tractability of modeling reflective and agentic emotional states in contrast to those rooted in sensorimotor or affective processes. Moreover, the model's consistent performance across all evaluation phases affirms its suitability as an exploratory tool for investigating emotion in interactive art contexts. This study contributes to the evolving convergence of affective computing, human-computer interaction (HCI), and empirical aesthetics. The proposed framework yields actionable insights for the design of emotionally adaptive systems. Future research should consider the integration of multimodal and temporally granular data, and the ethical dimensions associated with affective adaptivity in artistic and public-facing environments.

摘要

引言

交互式装置艺术提供了沉浸式和参与性的环境,能引发复杂和多维度的情感体验,包括感觉运动参与、情感共鸣和认知反思。然而,这些情感反应固有的动态性、主观性以及通常的前反思性质,对其系统预测和计算建模构成了重大挑战。

方法

为应对这些挑战,本研究引入了一个基于随机森林(RF)算法的可解释机器学习框架,该框架在预测性能和模型透明度之间提供了平衡的权衡,从而符合理论驱动的情感研究的需求。基于390份有效的问卷回复,情感反应沿着五个不同维度进行操作化:身体变化、感官参与、情感连接、认知反思和主动个性化。预测变量包括感官刺激、多模态交互特征和沉浸式环境线索。使用交叉验证和留出测试集进行模型评估,应用分类和回归指标来评估性能。

结果

RF模型在认知反思(F1 = 0.746,准确率 = 0.769)和主动个性化(F1 = 0.673,准确率 = 0.705)领域表现出最高的预测准确性,这表明这些认知介导的反应在参与者之间表现出更大的一致性和可学习性。相比之下,身体反应的可预测性明显较低(F1 = 0.379,准确率 = 0.397),这可能是由于它们独特的、具身的和非语言的性质,仅靠自我报告措施可能无法充分捕捉。

讨论

这些不同的结果强调了与植根于感觉运动或情感过程的情感状态相比,建模反思性和能动性情感状态的相对易处理性。此外,该模型在所有评估阶段的一致性能证实了其作为在交互式艺术背景下研究情感的探索工具的适用性。本研究有助于情感计算、人机交互(HCI)和实证美学的不断融合。所提出的框架为情感自适应系统的设计提供了可操作的见解。未来的研究应考虑多模态和时间粒度数据的整合,以及与艺术和面向公众环境中的情感适应性相关的伦理维度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b4a/12360417/8d875420c3c5/fpsyg-16-1609103-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验