Yang Hua, Zhao Xingru, Chen Zhuochang, Yang Lihong, Zhao Guihua, Xu Chenxiao, Xu Jinyi
Department of Cardiopulmonary Function, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China.
Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China.
Front Med (Lausanne). 2025 Aug 4;12:1611683. doi: 10.3389/fmed.2025.1611683. eCollection 2025.
The Bronchial Provocation Test (BPT) is the gold standard for diagnosing airway hyperresponsiveness (AHR) in suspected asthma patients but is time-consuming and resource-intensive. This study explores the potential of baseline pulmonary function parameters, particularly small airway indices, in predicting AHR and develops a machine learning-based model to improve screening efficiency and reduce unnecessary BPT referrals.
This retrospective study analyzed baseline pulmonary function data and BPT results from Henan Provincial People's Hospital (May to September 2024). Data were randomly split into training (69.8%, = 289) and validation (30.2%, = 125) groups using R software (Version 4.4.1). The Least Absolute Shrinkage and Selection Operator (LASSO) was applied to identify the most predictive variables, and 10-fold cross-validation was used to determine the optimal penalty parameter ( = 0.023) to prevent overfitting. Model fit was evaluated using the Akaike Information Criterion (AIC), and a logistic regression model was constructed along with a nomogram.
The optimal model (Model C, AIC = 310.44) included FEV1/FVC%, MEF75%, PEF%, and MMEF75-25%, which demonstrated superior discriminative capacity in both the training (AUC = 0.790, cut-off = 0.354, 95% CI: 0.724-0.760) and validation cohorts (AUC = 0.756, cut-off = 0.404, 95% CI: 0.600-0.814). In the validation cohort, multidimensional validation through calibration plots showed a slope of 0.883. The Net Reclassification Improvement (NRI) for Model C compared to other models was 0.169 (vs. Model A), 0.144 (vs. Model B), and 0.158 (vs. Model D). The Integrated Discrimination Improvement (IDI) and Decision Curve Analysis (DCA) indicated that Model C provided superior predictive performance and a significantly higher net benefit compared to the extreme curves. For instance, the 10th randomly selected patient in the validation cohort showed an 89.80% probability of AHR diagnosis, with a well-fitting model.
This study identifies MEF75%, MMEF75-25%, FEV1/FVC%, and PEF% as effective predictors of early airway hyperresponsiveness in suspected asthma patients. The machine learning-based predictive model demonstrates strong performance and clinical utility, offering potential as a visual tool for early detection and standardized treatment, thereby reducing the risk of symptom exacerbation, lung function decline, and airway remodeling.
支气管激发试验(BPT)是诊断疑似哮喘患者气道高反应性(AHR)的金标准,但耗时且资源消耗大。本研究探讨基线肺功能参数,特别是小气道指标,在预测AHR方面的潜力,并开发一种基于机器学习的模型,以提高筛查效率并减少不必要的BPT转诊。
这项回顾性研究分析了河南省人民医院(2024年5月至9月)的基线肺功能数据和BPT结果。使用R软件(版本4.4.1)将数据随机分为训练组(69.8%,n = 289)和验证组(30.2%,n = 125)。应用最小绝对收缩和选择算子(LASSO)来识别最具预测性的变量,并使用10倍交叉验证来确定最佳惩罚参数(λ = 0.023)以防止过度拟合。使用赤池信息准则(AIC)评估模型拟合,并构建逻辑回归模型和列线图。
最佳模型(模型C,AIC = 310.44)包括FEV1/FVC%、MEF75%、PEF%和MMEF75 - 25%,在训练队列(AUC = 0.790,截断值 = 0.354,95% CI:0.724 - 0.760)和验证队列(AUC = 0.756,截断值 = 0.404,95% CI:0.600 - 0.814)中均显示出卓越的判别能力。在验证队列中,通过校准图进行的多维度验证显示斜率为0.883。与其他模型相比,模型C的净重新分类改善(NRI)为与模型A相比为0.169,与模型B相比为0.144,与模型D相比为0.158。综合判别改善(IDI)和决策曲线分析(DCA)表明,与极端曲线相比,模型C具有卓越的预测性能和显著更高的净效益。例如,在验证队列中随机选择的第10位患者显示AHR诊断概率为89.80%,模型拟合良好。
本研究确定MEF75%、MMEF75 - 25%、FEV1/FVC%和PEF%为疑似哮喘患者早期气道高反应性的有效预测指标。基于机器学习的预测模型表现出强大的性能和临床实用性,有望作为早期检测和标准化治疗的可视化工具,从而降低症状加重、肺功能下降和气道重塑的风险。