Suppr超能文献

CART-GPT:一种基于T细胞信息的人工智能语言框架,用于解读CAR-T疗法中的神经毒性和治疗结果。

CART-GPT: A T Cell-Informed AI Linguistic Framework for Interpreting Neurotoxicity and Therapeutic Outcomes in CAR-T Therapy.

作者信息

Mao Tiantian, Shao Xiaojian, Guo Wei, Jiang Zhiwu, Jing Rui, Li Xin, Zhu Yiran, Jin Tony, Ma Tao, Lu Yong, Jin Guangxu

出版信息

bioRxiv. 2025 Aug 12:2025.08.08.669387. doi: 10.1101/2025.08.08.669387.

Abstract

Chimeric antigen receptor (CAR) T cell therapy holds transformative potential for hematologic malignancies, yet predicting patient-specific treatment efficacy and neurotoxicity remains a major clinical challenge due to the complex and heterogeneous nature of the infused CAR-T cell populations. Here, we introduce CART-GPT, a transformer-based model fine-tuned on a curated atlas of 1.12 million CAR-T single-cell RNA-seq profiles annotated with clinical outcomes. CART-GPT is the first AI model developed for CAR-T therapy that predicts both treatment response and the risk of immune effector cell-associated neurotoxicity syndrome (ICANS), achieving state-of-the-art performance (AUC ~0.8) and marking a significant advance in the field. The model provides interpretable insights, revealing that neither therapeutic efficacy nor neurotoxicity is driven by individual cell types alone, but by the combined influence of discrete, distinct subsets across diverse T cell states and transcriptional programs. A novel cell aggregation strategy links single-cell predictions to patient-level metrics, enhancing both accuracy and biological relevance. As a contribution to this ever-evolving field, we also release a comprehensive, annotated single-cell CAR-T atlas as a community resource to facilitate future research in immunotherapy. These advances demonstrate the potential of foundation models in single-cell biology to inform precision CAR-T treatment planning and facilitate the rational design of next-generation cell therapies.

摘要

嵌合抗原受体(CAR)T细胞疗法对血液系统恶性肿瘤具有变革潜力,但由于输注的CAR-T细胞群体具有复杂和异质性,预测患者特异性治疗疗效和神经毒性仍然是一项重大临床挑战。在此,我们引入了CART-GPT,这是一种基于Transformer的模型,在经过精心整理的112万个CAR-T单细胞RNA测序图谱上进行微调,并标注了临床结果。CART-GPT是首个为CAR-T疗法开发的人工智能模型,可预测治疗反应和免疫效应细胞相关神经毒性综合征(ICANS)的风险,达到了当前的最佳性能(AUC约为0.8),标志着该领域取得了重大进展。该模型提供了可解释的见解,表明治疗效果和神经毒性均不是由单一细胞类型驱动的,而是由不同T细胞状态和转录程序中离散、不同亚群的综合影响所驱动。一种新颖的细胞聚集策略将单细胞预测与患者水平指标联系起来,提高了准确性和生物学相关性。作为对这个不断发展的领域的贡献,我们还发布了一个全面的、带有注释的单细胞CAR-T图谱作为社区资源,以促进免疫治疗的未来研究。这些进展证明了基础模型在单细胞生物学中为精准CAR-T治疗规划提供信息并促进下一代细胞疗法合理设计的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3090/12363796/1fd946365a48/nihpp-2025.08.08.669387v1-f0007.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验