Amitabh Piyush, Parthasarathy Raghuveer
Department of Physics, University of Oregon, Eugene, Oregon, USA.
bioRxiv. 2025 Aug 13:2025.08.12.669957. doi: 10.1101/2025.08.12.669957.
It is well established from in vitro studies of immune cells that stimulation by a wide range of potential signals leads to motility and morphology changes. How these physical behaviors manifest inside a living animal remains unclear due to limitations of conventional imaging and analysis approaches. Here, we establish a quantitative framework for imaging and tracking neutrophil and macrophage dynamics in larval zebrafish, spanning a large fraction of the animal for multi-hour timescales with few-minute temporal resolution. We focus especially on the gut, examining innate immune responses to different preparations of the intestinal microbiome. Using light sheet fluorescence microscopy and trajectory analysis of hundreds of individual cells, we characterize speeds, directional persistence measures, and cellular morphology to reveal distinct population behaviors. Individual immune cells exhibit stable motility phenotypes, favoring predominantly motile or non-motile states rather than frequent transitions between them. Gut architecture constrains migration patterns as demonstrated by preferential anterior-posterior movement and a high probability of cells remaining in the vicinity of the gut throughout the imaging duration. Macrophages display significantly reduced sphericity during motile periods compared to non-motile periods, providing a morphological signature that may enable inference of dynamic behavior from static snapshots. Surprisingly, migration patterns remain consistent across diverse microbial conditions - germ-free, conventionally reared, and colonized by two strains of a zebrafish-native species - indicating that tissue structure exerts a stronger influence than bacterial stimuli on immune surveillance dynamics. Previously observed tissue damage by the wild-type strain, and the resulting recruitment of immune cells towards the damage site, provided the only microbe-specific cellular behavior. These findings reveal innate immune surveillance as a stereotyped process whose characteristics reflect both cellular decision-making and larger-scale anatomical structure.
从免疫细胞的体外研究中可以明确得知,多种潜在信号的刺激会导致细胞运动性和形态变化。由于传统成像和分析方法的局限性,这些物理行为在活体动物体内如何表现仍不清楚。在这里,我们建立了一个定量框架,用于成像和追踪斑马鱼幼体中中性粒细胞和巨噬细胞的动态,在长达数小时的时间尺度上覆盖动物的大部分区域,时间分辨率为几分钟。我们特别关注肠道,研究对不同肠道微生物群制剂的先天免疫反应。通过使用光片荧光显微镜和对数百个单个细胞的轨迹分析,我们对速度、方向持续性测量和细胞形态进行了表征,以揭示不同的群体行为。单个免疫细胞表现出稳定的运动表型,主要倾向于运动或非运动状态,而不是频繁在两者之间转换。肠道结构限制了迁移模式,这表现为优先的前后移动以及在整个成像期间细胞停留在肠道附近的高概率。与非运动期相比,巨噬细胞在运动期的球形度显著降低,这提供了一种形态特征,可能使我们能够从静态快照推断动态行为。令人惊讶的是,在多种微生物条件下——无菌、常规饲养以及由两种斑马鱼原生菌株定殖——迁移模式保持一致,这表明组织结构对免疫监视动态的影响比细菌刺激更强。先前观察到的野生型菌株造成的组织损伤以及由此导致的免疫细胞向损伤部位的募集,是唯一的微生物特异性细胞行为。这些发现揭示了先天免疫监视是一个刻板的过程,其特征反映了细胞决策和更大尺度的解剖结构。