McKay Daniel, Lupanga Upendo, Perez Michelle Uebele, Krebs Melanie, Wege Stefanie, Grabe Michael, Schumacher Karin
Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.
INRES, Plant Nutrition, University of Bonn, Germany.
bioRxiv. 2025 Aug 17:2025.08.13.670069. doi: 10.1101/2025.08.13.670069.
Plant survival requires cellular sensing systems that detect and respond to nutrient and ion fluctuations. The ability to monitor and adjust solute concentrations is essential for managing environmental stresses, particularly salt stress, yet the molecular mechanisms underlying cellular ion sensing remain largely unknown. Here, we combine luminal pH measurements with mathematical modelling of ion transport to investigate the role of the Trans-Golgi Network/Early Endosome (TGN/EE) for cellular ion homeostasis. Our results demonstrate that cytosolic concentrations of Cl, Na and K directly impact ion transport activity at the TGN/EE, thereby influencing luminal pH dynamics. Specifically, we find that the TGN/EE lumen becomes more alkaline when plants are exposed to elevated NaCl concentrations, indicating a previously unrecognised role for endomembrane pH regulation in salt stress responses. Furthermore, we demonstrate that TGN/EE ion transport mutants that fail to exhibit NaCl-induced alkalisation display hypersensitivity to Na. These findings indicate that the translation of elevated cytosolic ion concentrations into TGN/EE luminal alkalisation, represents an important mechanism for conferring Na tolerance in plant cells.
植物的存活需要能够检测并响应养分和离子波动的细胞传感系统。监测和调整溶质浓度的能力对于应对环境胁迫,尤其是盐胁迫至关重要,然而细胞离子传感背后的分子机制在很大程度上仍然未知。在此,我们将腔内pH测量与离子转运的数学模型相结合,以研究反式高尔基体网络/早期内体(TGN/EE)在细胞离子稳态中的作用。我们的结果表明,细胞质中Cl、Na和K的浓度直接影响TGN/EE处的离子转运活性,从而影响腔内pH动态变化。具体而言,我们发现当植物暴露于升高的NaCl浓度时,TGN/EE腔变得更碱性,这表明内膜pH调节在盐胁迫响应中具有先前未被认识的作用。此外,我们证明未能表现出NaCl诱导的碱化的TGN/EE离子转运突变体对Na表现出超敏感性。这些发现表明,细胞质离子浓度升高转化为TGN/EE腔内碱化,是植物细胞赋予耐Na能力的重要机制。