Cylke Arianna, Banerjee Shiladitya
Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA.
bioRxiv. 2025 Aug 15:2025.08.11.669779. doi: 10.1101/2025.08.11.669779.
Bacterial metabolic strategies are fundamentally linked to their physical form, yet a quantitative understanding of how cell size and shape constrain the efficiency of biomass production remains poorly understood. Here, we develop a coarse-grained whole-cell model of bacterial physiology that integrates proteome allocation, metabolic fluxes, and cell geometry with physical limits on cell surface area and intracellular diffusion. Our model shows that the efficiency of cellular growth is not monotonic with nutrient availability; instead, it peaks precisely at the onset of overflow metabolism, framing this metabolic switch as an optimal tradeoff between efficient use of imported nutrients and rapid growth. By simulating perturbations to cell morphology, we demonstrate the strong metabolic advantage of a high surface-to-volume ratio, which consistently improves growth efficiency. Finally, we show how geometric limits on growth efficiency result in a hard physical constraint: the maximum sustainable cell size is inversely related to the growth rate. This is due to a fundamental conflict between the proteomic cost of growth speed and the cost of size, which creates a budget crisis in large, fast-growing cells. Our work shows how a few physical rules define the allowable strategies for bacterial metabolism and provides a mechanistic explanation for the observed limits on microbial cell size and growth.
细菌的代谢策略与其物理形态有着根本联系,然而,对于细胞大小和形状如何限制生物量生产效率的定量理解仍知之甚少。在此,我们构建了一个细菌生理学的粗粒度全细胞模型,该模型将蛋白质组分配、代谢通量以及细胞几何形状与细胞表面积和细胞内扩散的物理限制整合在一起。我们的模型表明,细胞生长效率并非随营养物质可用性单调变化;相反,它恰好在溢流代谢开始时达到峰值,将这种代谢转变描述为有效利用输入营养物质和快速生长之间的最佳权衡。通过模拟对细胞形态的扰动,我们证明了高表面积与体积比具有强大的代谢优势,这始终能提高生长效率。最后,我们展示了生长效率的几何限制如何导致一个严格的物理约束:最大可持续细胞大小与生长速率成反比。这是由于生长速度的蛋白质组成本与细胞大小成本之间存在根本冲突,这在大型、快速生长的细胞中引发了预算危机。我们的工作展示了一些物理规则如何定义细菌代谢的可行策略,并为观察到的微生物细胞大小和生长限制提供了一个机理解释。