Wu Katherine, Vaughan Alec J, Bossowski Jozef P, Hao Yuan, Ziogou Aikaterini, Kim Seon Min, Kim Tae Ha, Nakamura Mari N, Pillai Ray, Mancini Mariana, Rajalingam Sahith, Han Mingqi, Nakamura Toshitaka, Wang Lidong, Chung Suckwoo, Simeone Diane, Shackelford David, Kang Yun Pyo, Conrad Marcus, Papagiannakopoulos Thales
bioRxiv. 2025 Aug 11:2025.08.07.668766. doi: 10.1101/2025.08.07.668766.
Pre-clinical and clinical studies have demonstrated how dietary antioxidants or mutations activating antioxidant metabolism promote cancer, highlighting a central role oxidative stress in tumorigenesis. However, it is unclear if oxidative stress ultimately increases to a point of cell death. Emerging evidence indicates that cancer cells are susceptible to ferroptosis, a form of cell death that is triggered by uncontrolled lipid peroxidation. Despite broad enthusiasm about harnessing ferroptosis as a novel anti-cancer strategy, it remains unknown whether ferroptosis is a barrier to tumorigenesis and if it can be leveraged therapeutically. Using genetically-engineered mouse models (GEMMs) of lung adenocarcinoma (LUAD), we performed tumor specific loss-of-function studies of the two key ferroptosis suppressors, ( ) and ( ), and observed increased lipid peroxidation, ferroptosis and robust suppression of tumorigenesis, suggesting that lung tumors are highly sensitive to ferroptosis. Furthermore, across multiple pre-clinical models, we found that FSP1 was selectively required for ferroptosis protection , but not , underscoring a heightened need to buffer lipid peroxidation under physiological conditions. Lipidomic analyses revealed that Fsp1-knockout (Fsp1 ) tumors had an accumulation of lipid peroxides, and inhibition of ferroptosis with genetic, dietary, or pharmacological approaches effectively restored the growth of Fsp1 tumors . Unlike , expression was prognostic for disease progression and poorer survival in LUAD patients, highlighting its potential as a viable therapeutic target. Moreover, given the critical role of GPX4 in multiple tissues, there is a greater therapeutic window for targeting FSP1. To this end, we demonstrated that pharmacologic inhibition of FSP1 had significant therapeutic benefit in pre-clinical lung cancer models. Our studies highlight the importance of ferroptosis suppression and pave the way for FSP1 inhibition as a therapeutic strategy to improve disease outcome in lung cancer patients.
临床前和临床研究已经证明,膳食抗氧化剂或激活抗氧化代谢的突变如何促进癌症,突出了氧化应激在肿瘤发生中的核心作用。然而,尚不清楚氧化应激最终是否会增加到细胞死亡的程度。新出现的证据表明,癌细胞易受铁死亡影响,铁死亡是一种由不受控制的脂质过氧化引发的细胞死亡形式。尽管人们对利用铁死亡作为一种新型抗癌策略抱有广泛热情,但铁死亡是否是肿瘤发生的障碍以及是否可以用于治疗仍不清楚。我们使用肺腺癌(LUAD)的基因工程小鼠模型(GEMMs),对两种关键的铁死亡抑制因子( )和( )进行了肿瘤特异性功能丧失研究,观察到脂质过氧化增加、铁死亡以及肿瘤发生受到有力抑制,这表明肺肿瘤对铁死亡高度敏感。此外,在多个临床前模型中,我们发现FSP1是铁死亡保护( )所选择性必需的,但不是( )所必需的,这强调了在生理条件下缓冲脂质过氧化的更高需求。脂质组学分析显示,Fsp1基因敲除(Fsp1 )的肿瘤中脂质过氧化物积累,通过基因、饮食或药理学方法抑制铁死亡可有效恢复Fsp1 肿瘤的生长( )。与( )不同,( )的表达对LUAD患者的疾病进展和较差生存率具有预后意义,突出了其作为可行治疗靶点的潜力。此外,鉴于GPX4在多个组织中的关键作用,靶向FSP1具有更大的治疗窗口。为此,我们证明了对FSP1的药理学抑制在临床前肺癌模型中具有显著的治疗益处。我们的研究突出了抑制铁死亡的重要性,并为将FSP1抑制作为一种改善肺癌患者疾病结局的治疗策略铺平了道路。