Lee Jang Woo, Cai Liang, Nam Jeong-Seok, Kim Dawoon, Kim Taehoon, Kim Sihyeok, Lee Jae Ho, Jang Cheolhwa, Baek Sungpyo, Han Jiye, Kim Kiyong, An Seongpil, Chung In, Kwon Eunsang, Lee Sungjoo, Jeon Il
Department of Nano Engineering, Department of Nano Science and Technology, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan.
Adv Sci (Weinh). 2025 Aug 20:e11489. doi: 10.1002/advs.202511489.
Achieving both high linearity and symmetricity in metal halide perovskite (MHP)-based memristors remains challenging, primarily due to their abrupt switching behaviors and irregular conductive filament (CF) pathways. Here, bifacially engineered MHP memristors exhibiting simultaneous high linearity, symmetricity, and reliability are reported. Top-surface passivation using phenylethylammonium iodide (PEAI) facilitates the formation of an ultrathin 2D perovskite layer (PEAPbI), promoting gradual switching and effectively suppressing ion migration during CF formation, thereby significantly enhancing the linearity of long-term potentiation. Meanwhile, bottom-side PEAI treatment alleviates tensile strain and enhances perovskite grain uniformity, leading to stable CF rupture and improved linearity in long-term depression as well as symmetricity. The resulting bifacially engineered memristor device achieves an exceptionally high I/I ratio of 3.67 × 10, remarkable endurance exceeding 11 000 cycles, and robust data retention time over 10 s. Moreover, these bifacially engineered synaptic memristors demonstrate superior classification accuracies of 92.60% and 94.53% in Canadian Institute for Advanced Research 10 (CIFAR-10) and Modified National Institute of Standards and Technology (MNIST) simulations, respectively. This study provides an effective engineering strategy for overcoming persistent challenges in MHP-based memristors, thus advancing their potential for next-generation hardware-based neuromorphic computing applications.
在基于金属卤化物钙钛矿(MHP)的忆阻器中实现高线性度和对称性仍然具有挑战性,这主要是由于其突然的开关行为和不规则的导电丝(CF)路径。在此,报道了具有同时高线性度、对称性和可靠性的双面工程化MHP忆阻器。使用苯乙铵碘化物(PEAI)进行顶表面钝化有助于形成超薄二维钙钛矿层(PEAPbI),促进逐渐开关并有效抑制CF形成过程中的离子迁移,从而显著提高长期增强的线性度。同时,底部PEAI处理减轻了拉伸应变并提高了钙钛矿晶粒均匀性,导致CF稳定破裂,并改善了长期抑制中的线性度以及对称性。由此产生的双面工程化忆阻器器件实现了3.67×10的极高I/I比、超过11000次循环的卓越耐久性以及超过10秒的稳健数据保留时间。此外,这些双面工程化突触忆阻器在加拿大高级研究所10(CIFAR-10)和改进的国家标准与技术研究所(MNIST)模拟中分别展示了92.60%和94.53%的卓越分类准确率。本研究提供了一种有效的工程策略,用于克服基于MHP的忆阻器中持续存在的挑战,从而推动其在下一代基于硬件的神经形态计算应用中的潜力。