Deka Rajesh, Temel Merve, Crespi Stefano, Orthaber Andreas
Synthetic Molecular Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden.
Dalton Trans. 2025 Aug 20. doi: 10.1039/d5dt01697e.
Molecular switches-compounds capable of reversibly interconverting between distinct states in response to external stimuli-are foundational to the design of dynamic functional materials. Classical switches based on carbon and lighter pnictogen frameworks, such as stilbenes, azobenzenes, and imines, have long dominated the field owing to their well-defined photophysical properties, synthetic accessibility, and reversible /-isomerization or related transformations. In recent years, significant efforts have been devoted to designing molecular switches incorporating main-group elements-not only to harness the unique attributes of these elements in expanding the frontier of stimuli beyond light and heat, but also to unlock novel mechanistic pathways. In this context, heavier group 15 elements-particularly phosphorus-have emerged as promising platforms for designing responsive molecular frameworks. Advances over the past decade in the synthesis and stabilization of unsaturated phosphorus species-including phosphaalkenes (PC), diphosphenes (PP), their heavier analogues (EE, PE; E = Sb, Bi), a variety of hypervalent phosphorus compounds, and phosphorus-based (di)radicals-have opened new opportunities in this field. These systems are not limited to classical photo- or thermally induced / isomerization, but also respond to alternative triggers such as metal coordination, redox inputs, and chemical stimuli. Moreover, reactivity modes such as tautomerism, ligand rearrangement, and conformational dynamics provide further avenues for structural interconversion, enriching the scope of pnictogen-based molecular motion. Building upon the well-established paradigms of CC, NN, and CN-based switching systems, this Perspective highlights the evolution and future potential of heavier pnictogen-based molecular switches, with a particular focus on phosphorus-containing frameworks. We examine how /-isomerization, tautomerism, and coordination-driven transformations can be strategically harnessed to develop multifunctional, stimuli-responsive materials. Furthermore, we compare these systems with their lighter main-group analogues and showcase recent advances in their integration into molecular motors, photoresponsive ligands, and other related applications. In doing so, we outline a forward-looking roadmap for the rational design of main-group-based molecular switches and underscore the promise of heavier pnictogens in expanding the molecular design toolkit. We also highlight key challenges that must be addressed to enhance the efficiency of these systems and position them as viable alternatives to classical molecular organic switches.
分子开关——能够响应外部刺激在不同状态之间可逆地相互转换的化合物——是动态功能材料设计的基础。基于碳和较轻的氮族元素骨架的经典开关,如二苯乙烯、偶氮苯和亚胺,由于其明确的光物理性质、合成可及性以及可逆的顺反异构化或相关转变,长期以来一直主导着该领域。近年来,人们致力于设计包含主族元素的分子开关——不仅是为了利用这些元素的独特属性来拓展光和热之外的刺激前沿,也是为了开启新的作用机制途径。在这种背景下,较重的第15族元素——特别是磷——已成为设计响应性分子骨架的有前景的平台。过去十年中,不饱和磷物种(包括磷烯(P═C)、双磷烯(P═P)、它们较重的类似物(E═E、P═E;E = Sb、Bi)、各种高价磷化合物以及基于磷的(双)自由基)的合成和稳定化取得了进展,为该领域带来了新机遇。这些体系不仅限于经典的光诱导或热诱导的顺反异构化,还能响应诸如金属配位、氧化还原输入和化学刺激等其他触发因素。此外,互变异构、配体重排和构象动力学等反应模式为结构相互转换提供了更多途径,丰富了基于氮族元素的分子运动范围。基于已确立的基于C═C、N═N和C═N的开关系统范式,本综述重点介绍了较重的基于氮族元素的分子开关的发展历程和未来潜力,特别关注含磷骨架。我们研究了如何战略性地利用顺反异构化、互变异构和配位驱动的转变来开发多功能、刺激响应性材料。此外,我们将这些体系与其较轻的主族类似物进行比较,并展示了它们在集成到分子马达、光响应配体及其他相关应用方面的最新进展。通过这样做,我们勾勒出了基于主族元素的分子开关合理设计的前瞻性路线图,并强调了较重的氮族元素在扩展分子设计工具包方面的前景。我们还强调了为提高这些体系的效率并将它们定位为经典分子有机开关的可行替代方案而必须解决的关键挑战。