Beaumont Matthew, Selvaraju Divya, Pianezza Riccardo, Kofler Robert
Institut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria.
Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria.
PLoS Genet. 2025 Aug 20;21(8):e1011649. doi: 10.1371/journal.pgen.1011649. eCollection 2025 Aug.
Transposable element (TE) invasions pose risks to both the TE and the host. All copies of a TE may be lost via genetic drift, or host populations may suffer fitness declines, potentially leading to extinction. By monitoring invasions of the P-element in experimental D. melanogaster populations for over 100 generations, we uncovered a novel risk for invading TEs. In two replicate populations, the P-element rapidly multiplied until a piRNA-based host defence emerged, leading to the plateauing of TE copy numbers. However, in one population (R2), P-element copy numbers stabilised at a significantly lower level, despite the absence of a piRNA-based host defence. We find that this stabilisation was likely driven by the propagation of non-autonomous insertions, characterised by internal-deletions, which out-competed the autonomous full-length insertions. Such a rapid proliferation of non-autonomous insertions could account for the high prevalence of P-element insertions with internal-deletions observed in natural D. melanogaster populations. Our work reveals that TEs may stochastically sabotage their own spread in populations due to the emergence of non-autonomous elements, rendering the establishment of a host defence unnecessary. The proliferation of non-autonomous elements may also lead into an evolutionary dead end, where affected populations are resistant to re-invasion (e.g. following recurrent horizontal transfer), yet are unable to infect other species due to a lack of autonomous insertions.
转座元件(TE)的入侵对转座元件本身和宿主都构成风险。转座元件的所有拷贝可能会因基因漂变而丢失,或者宿主种群的适应性可能会下降,这有可能导致灭绝。通过对实验性黑腹果蝇种群中转座子P元件的入侵进行了100多代的监测,我们发现了入侵转座元件的一种新风险。在两个重复种群中,P元件迅速增殖,直到基于piRNA的宿主防御机制出现,导致转座元件拷贝数趋于平稳。然而,在一个种群(R2)中,尽管没有基于piRNA的宿主防御机制,P元件拷贝数却稳定在一个明显较低的水平。我们发现这种稳定可能是由非自主插入的传播驱动的,其特征是内部缺失,这种非自主插入比自主全长插入更具竞争力。这种非自主插入的快速增殖可以解释在自然黑腹果蝇种群中观察到的具有内部缺失的P元件插入的高发生率。我们的研究表明,由于非自主元件的出现,转座元件可能会随机破坏它们在种群中的传播,从而使得宿主防御机制的建立变得不必要。非自主元件的增殖也可能导致进化的死胡同,在这种情况下,受影响的种群对再次入侵具有抗性(例如在反复水平转移之后),但由于缺乏自主插入而无法感染其他物种。