Roberts Ashley P E, Orr Anne, Iliev Victor, Orr Lauren, McFarlane Steven, Yang Zhousiyu, Epifano Ilaria, Loney Colin, Rodriguez Mila Collados, Cliffe Anna R, Conn Kristen L, Boutell Chris
Department of Infection and Immunity, MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UNITED KINGDOM.
Department of Life Sciences, School of Natural Sciences, College of Health and Science, Joseph Banks laboratories, University of Lincoln, Lincoln, UNITED KINGDOM.
PLoS Pathog. 2025 Aug 20;21(8):e1012501. doi: 10.1371/journal.ppat.1012501. eCollection 2025 Aug.
Herpesviruses are ubiquitous pathogens that cause a wide range of disease. Upon nuclear entry, their genomes associate with histones and chromatin modifying enzymes that regulate the progression of viral transcription and outcome of infection. While the composition and modification of viral chromatin has been extensively studied on bulk populations of infected cells by chromatin immunoprecipitation, this key regulatory process remains poorly defined at single-genome resolution. Here we use high-resolution quantitative imaging to investigate the spatial proximity of canonical and variant histones at individual Herpes Simplex Virus 1 (HSV-1) genomes within the first 90 minutes of infection. We identify significant population heterogeneity in the stable enrichment and spatial proximity of canonical histones (H2A, H2B, H3.1) at viral DNA (vDNA) relative to established promyelocytic leukaemia nuclear body (PML-NB) host factors that are actively recruited to viral genomes upon nuclear entry. We show the replication-independent histone H3.3/H4 chaperone Daxx to cooperate with PML to mediate the enrichment and spatial localization of variant histone H3.3 at vDNA and limit the rate of HSV-1 genome decompaction. This host response is counteracted by the viral ubiquitin ligase ICP0, which degrades PML to disperse Daxx and variant histone H3.3 from vDNA to stimulate the progression of viral immediate-early (IE) transcription, genome expansion, and onset of HSV-1 replication. Our data support a model of intermediate and sequential histone assembly initiated by Daxx that limits the rate of HSV-1 genome decompaction independently of the stable enrichment of histones H2A and H2B at vDNA required to facilitate canonical nucleosome assembly. We identify HSV-1 genome decompaction upon nuclear infection to play a key role in the initiation and functional outcome of HSV-1 lytic infection, findings pertinent to the transcriptional regulation of many nuclear replicating herpesvirus pathogens.
疱疹病毒是引起多种疾病的普遍存在的病原体。进入细胞核后,它们的基因组与组蛋白和染色质修饰酶结合,这些酶调节病毒转录进程和感染结果。虽然通过染色质免疫沉淀在大量受感染细胞群体上对病毒染色质的组成和修饰进行了广泛研究,但在单基因组分辨率下,这个关键的调控过程仍然定义不清。在这里,我们使用高分辨率定量成像技术来研究单纯疱疹病毒1型(HSV-1)感染最初90分钟内单个病毒基因组上典型组蛋白和变体组蛋白的空间接近程度。我们发现,相对于在核进入时被积极招募到病毒基因组上的已确定的早幼粒细胞白血病核体(PML-NB)宿主因子,病毒DNA(vDNA)上典型组蛋白(H2A、H2B、H3.1)的稳定富集和空间接近程度存在显著的群体异质性。我们表明,不依赖复制的组蛋白H3.3/H4伴侣蛋白Daxx与PML协同作用,介导变体组蛋白H3.3在vDNA上的富集和空间定位,并限制HSV-1基因组解压缩的速率。这种宿主反应被病毒泛素连接酶ICP0抵消,ICP0降解PML,使Daxx和变体组蛋白H3.3从vDNA上分散,以刺激病毒立即早期(IE)转录、基因组扩增和HSV-1复制的开始。我们的数据支持一个由Daxx启动的中间和顺序组蛋白组装模型,该模型独立于促进典型核小体组装所需的vDNA上组蛋白H2A和H2B的稳定富集,限制了HSV-1基因组解压缩的速率。我们发现核感染时HSV-1基因组解压缩在HSV-1裂解感染的起始和功能结果中起关键作用,这些发现与许多核复制疱疹病毒病原体的转录调控相关。