Zhang Ziwei, Ochirova Aleksandra, Liu Siqi, Herbert Alex D, Wu Yunzhao, Boucher Wayne, Lee Steven F, Laue Ernest D, Klenerman David, Ponjavic Aleks
Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
Department of Biochemistry, University of Cambridge, Cambridge, UK.
Sci Rep. 2025 Aug 20;15(1):30551. doi: 10.1038/s41598-025-15623-3.
The double-helix point-spread function (DH-PSF) is one of the most used PSFs for large depth-of-field 3D single-molecule localisation microscopy. Due to its popularity, many algorithms have been developed to analyse experimental DH-PSF data, either based on dedicated DH-PSF fitting or on generalised PSF fitting, typically using cubic splines. We show here that the most popular implementations of both these approaches have limitations in terms of localisation performance, processing speed or user-friendliness. To overcome some of these limitations, we have developed a new analytical approach for DH-PSF fitting based on unmixing (DHPSFU) of fitted localisation data using distance pairing. We compare DHPSFU with two popular algorithms, SMAP and EasyDHPSF, using realistic simulated datasets based on experimental data, to show that our algorithm achieves the highest Jaccard index (DHPSFU: 0.98; SMAP: 0.91; EasyDHPSF: 0.85) and fastest CPU-based processing speed (DHPSFU: 6,800 locs/s; SMAP: 2,500 locs/s; EasyDHPSF: 63 locs/s). We also show that our algorithm achieves the best resolution when imaging the cellular plasma membrane of Jurkat T cells (DHPSFU: 140 nm, EasyDHPSF: 162 nm, SMAP: 165 nm). We have incorporated DHPSFU as a Fiji plugin and provide Matlab and Python scripts for user customisation.
双螺旋点扩散函数(DH - PSF)是大景深三维单分子定位显微镜中使用最广泛的点扩散函数之一。由于其受欢迎程度,已经开发了许多算法来分析实验性的DH - PSF数据,这些算法要么基于专门的DH - PSF拟合,要么基于广义的PSF拟合,通常使用三次样条。我们在此表明,这两种方法最流行的实现方式在定位性能、处理速度或用户友好性方面都存在局限性。为了克服其中一些局限性,我们开发了一种基于使用距离配对对拟合定位数据进行解混(DHPSFU)的DH - PSF拟合新分析方法。我们使用基于实验数据的逼真模拟数据集,将DHPSFU与两种流行算法SMAP和EasyDHPSF进行比较,结果表明我们的算法实现了最高的杰卡德指数(DHPSFU:0.98;SMAP:0.91;EasyDHPSF:0.85)和最快的基于CPU的处理速度(DHPSFU:6800个定位/秒;SMAP:2500个定位/秒;EasyDHPSF:63个定位/秒)。我们还表明,在对Jurkat T细胞的细胞质膜进行成像时,我们的算法实现了最佳分辨率(DHPSFU:140纳米,EasyDHPSF:162纳米,SMAP:165纳米)。我们已将DHPSFU作为Fiji插件纳入,并提供Matlab和Python脚本以供用户定制。