文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于PiRNA表达与CA153的乳腺癌早期诊断机器学习模型

Machine learning model for early diagnosis of breast cancer based on PiRNA expression with CA153.

作者信息

Niu Limin, Zhou Weicheng, Li Xiao, Zhao Jinming, Li Lei, Song Xingguo

机构信息

Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jiyan Road 440#, Jinan, 250117, Shandong, PR China.

Core & Molecular Lab (CML), Roche Diagnostics (Shanghai) Limited, Shanghai, PR China.

出版信息

Sci Rep. 2025 Aug 20;15(1):30586. doi: 10.1038/s41598-025-15431-9.


DOI:10.1038/s41598-025-15431-9
PMID:40835665
Abstract

PIWI-interacting RNAs (piRNAs) have been implicated in the biological processes of various cancers. This study aimed to investigate the diagnostic potential of circulating piRNAs in breast cancer (BC) using machine learning (ML) frameworks. A serum tri-piRNA signature (piR-139966, piR-2572505, piR-2570061) was selected via piRNA sequencing, validated by qPCR, and then analyzed in combination with related clinical factors. Predictive ML models for early diagnosis of BC combining piRNA expression with CA153 were constructed using 10 ML algorithms and evaluated by 8 performance metrics. Serum levels of piR-139966, piR-2572505, and piR-2570061 were significantly upregulated in early-stage BC patients compared to matched healthy controls. This tri-piRNA panel demonstrated enhanced diagnostic precision for BC detection and exhibited complementary value to CA153 measurements, whether used alone or combined. Through systematic ML optimization, we developed a stratified diagnostic model where XGBoost algorithm showed optimal performance in both training and validation cohorts for early-stage BC identification. With XGBoost algorithms applied to piRNA expression along with CA153, we developed and validated a predictive ML model with superior diagnostic accuracy compared to conventional approaches.

摘要

PIWI相互作用RNA(piRNA)与多种癌症的生物学过程有关。本研究旨在使用机器学习(ML)框架研究循环piRNA在乳腺癌(BC)中的诊断潜力。通过piRNA测序选择了一种血清三联piRNA特征(piR-139966、piR-2572505、piR-2570061),经qPCR验证,然后结合相关临床因素进行分析。使用10种ML算法构建了结合piRNA表达与CA153用于BC早期诊断的预测ML模型,并通过8种性能指标进行评估。与匹配的健康对照相比,早期BC患者血清中piR-139966、piR-2572505和piR-2570061的水平显著上调。无论单独使用还是联合使用,这种三联piRNA检测方法在BC检测中都显示出更高的诊断精度,并且对CA153测量具有互补价值。通过系统的ML优化,我们开发了一种分层诊断模型,其中XGBoost算法在早期BC识别的训练和验证队列中均表现出最佳性能。将XGBoost算法应用于piRNA表达以及CA153,我们开发并验证了一种预测ML模型,其诊断准确性优于传统方法。

相似文献

[1]
Machine learning model for early diagnosis of breast cancer based on PiRNA expression with CA153.

Sci Rep. 2025-8-20

[2]
A robust machine learning model based on ribosomal-subunit-derived piRNAs for diagnostic potential of nonsmall cell lung cancer across multicentre, large-scale of sequencing data.

Clin Transl Med. 2025-8

[3]
An ensemble strategy for piRNA identification through hybrid moment-based feature modeling.

Sci Rep. 2025-8-18

[4]
piR-1919609 Is an Ideal Potential Target for Reversing Platinum Resistance in Ovarian Cancer.

Technol Cancer Res Treat. 2024

[5]
Serum PIWI-Interacting RNAs piR-020619 and piR-020450 Are Promising Novel Biomarkers for Early Detection of Colorectal Cancer.

Cancer Epidemiol Biomarkers Prev. 2020-5

[6]
Machine learning based screening of biomarkers associated with cell death and immunosuppression of multiple life stages sepsis populations.

Sci Rep. 2025-8-19

[7]
Stabilizing machine learning for reproducible and explainable results: A novel validation approach to subject-specific insights.

Comput Methods Programs Biomed. 2025-6-21

[8]
PiRNA hsa_pir_018849 promotes the proliferation and invasion of osteosarcoma cells by regulating the stability of CCN5 mRNA.

J Orthop Surg Res. 2025-8-2

[9]
Construction and validation of HBV-ACLF bacterial infection diagnosis model based on machine learning.

BMC Infect Dis. 2025-7-1

[10]
Development of Machine Learning-based Algorithms to Predict the 2- and 5-year Risk of TKA After Tibial Plateau Fracture Treatment.

Clin Orthop Relat Res. 2025-3-12

本文引用的文献

[1]
Machine-learning diagnostics of breast cancer using piRNA biomarkers.

Biomarkers. 2025-3

[2]
Cancer statistics, 2025.

CA Cancer J Clin. 2025

[3]
Breast cancer statistics 2024.

CA Cancer J Clin. 2024

[4]
Liquid biopsy for breast cancer and other solid tumors: a review of recent advances.

Breast Cancer. 2025-1

[5]
The burgeoning importance of PIWI-interacting RNAs in cancer progression.

Sci China Life Sci. 2024-4

[6]
From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment.

Cell. 2023-4-13

[7]
The epigenetic regulatory mechanism of PIWI/piRNAs in human cancers.

Mol Cancer. 2023-3-7

[8]
Emerging roles and functional mechanisms of PIWI-interacting RNAs.

Nat Rev Mol Cell Biol. 2023-2

[9]
piRNAs and PIWI proteins as potential biomarkers in ‌Breast cancer.

Mol Biol Rep. 2022-10

[10]
piRNA-14633 promotes cervical cancer cell malignancy in a METTL14-dependent m6A RNA methylation manner.

J Transl Med. 2022-1-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索