Suppr超能文献

基于列线图的子宫肌瘤剔除术后复发风险预测模型的建立与验证

Development and validation of a nomogram-based predictive model for recurrence risk of uterine leiomyoma after myomectomy.

作者信息

Song Chengzhi, Li Zhen, Wu Yueling, Zou Jingjing, Lin Xinwei, Zou Bilian, Zhao Shibo, Xu Yijin, Li Yingying, Liu Yanjun, Tu Ziying, Huang Weiyu, Zhang Ying, Li Wenle

机构信息

Graduate School of Guangdong Medical University, Zhanjiang, 524023, China.

Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.

出版信息

Sci Rep. 2025 Aug 20;15(1):30499. doi: 10.1038/s41598-025-14390-5.

Abstract

Uterine fibroids are common among women of reproductive age and often recur after treatment. Accurate recurrence prediction is essential for guiding clinical decisions, yet existing models remain inadequate. This study aimed to develop a nomogram based on Least Absolute Shrinkage and Selection Operator (LASSO) regression to estimate recurrence risk after myomectomy. We retrospectively analyzed data from 678 patients who underwent myomectomy, randomly dividing them into training and validation cohorts (7:3 ratio). LASSO regression was used to select relevant predictors, and a nomogram was constructed. Model performance was evaluated using receiver operating characteristic curves, calibration plots, and decision curve analysis. Six key predictors were identified: leiomyoma subclassification, fibroid diameter ≤ 4 cm, postoperative residual fibroids, postoperative pregnancy or childbirth, family history, and the number of fibroids detected via transvaginal ultrasound. The nomogram demonstrated strong discrimination, calibration, and clinical utility. The proposed nomogram provides a reliable and practical tool for predicting fibroid recurrence, supporting personalized postoperative management and follow-up planning.

摘要

子宫肌瘤在育龄女性中很常见,且治疗后常复发。准确的复发预测对于指导临床决策至关重要,但现有模型仍存在不足。本研究旨在基于最小绝对收缩和选择算子(LASSO)回归开发一种列线图,以估计子宫肌瘤切除术后的复发风险。我们回顾性分析了678例行子宫肌瘤切除术患者的数据,将他们随机分为训练队列和验证队列(比例为7:3)。使用LASSO回归选择相关预测因素,并构建列线图。使用受试者工作特征曲线、校准图和决策曲线分析评估模型性能。确定了六个关键预测因素:平滑肌瘤亚分类、肌瘤直径≤4 cm、术后残留肌瘤、术后妊娠或分娩、家族史以及经阴道超声检测到的肌瘤数量。该列线图显示出较强的区分度、校准度和临床实用性。所提出的列线图为预测肌瘤复发提供了一种可靠且实用的工具,有助于个性化的术后管理和随访计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a60/12368230/caef15e8d412/41598_2025_14390_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验