Suppr超能文献

人工智能驱动的多发性硬化症病情进展重新分类

AI-driven reclassification of multiple sclerosis progression.

作者信息

Ganjgahi Habib, Häring Dieter A, Aarden Piet, Graham Gordon, Sun Yang, Gardiner Stephen, Su Wendy, Berge Claude, Bischof Antje, Fisher Elizabeth, Gaetano Laura, Thoma Stefan P, Kieseier Bernd C, Nichols Thomas E, Thompson Alan J, Montalban Xavier, Lublin Fred D, Kappos Ludwig, Arnold Douglas L, Bermel Robert A, Wiendl Heinz, Holmes Chris C

机构信息

Department of Statistics, University of Oxford, Oxford, UK.

Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.

出版信息

Nat Med. 2025 Aug 20. doi: 10.1038/s41591-025-03901-6.

Abstract

Multiple sclerosis (MS) affects 2.9 million people. Traditional classification of MS into distinct subtypes poorly reflects its pathobiology and has limited value for prognosticating disease evolution and treatment response, thereby hampering drug discovery. Here we report a data-driven classification of MS disease evolution by analyzing a large clinical trial database (approximately 8,000 patients, 118,000 patient visits and more than 35,000 magnetic resonance imaging scans) using probabilistic machine learning. Four dimensions define MS disease states: physical disability, brain damage, relapse and subclinical disease activity. Early/mild/evolving (EME) MS and advanced MS represent two poles of a disease severity spectrum. Patients with EME MS show limited clinical impairment and minor brain damage. Transitions to advanced MS occur via brain damage accumulation through inflammatory states, with or without accompanying symptoms. Advanced MS is characterized by moderate to high disability levels, radiological disease burden and risk of disease progression independent of relapses, with little probability of returning to earlier MS states. We validated these results in an independent clinical trial database and a real-world cohort, totaling more than 4,000 patients with MS. Our findings support viewing MS as a disease continuum. We propose a streamlined disease classification to offer a unifying understanding of the disease, improve patient management and enhance drug discovery efficiency and precision.

摘要

多发性硬化症(MS)影响着290万人。传统上将MS分为不同亚型的分类方法难以反映其病理生物学特征,对预测疾病进展和治疗反应的价值有限,从而阻碍了药物研发。在此,我们通过使用概率机器学习分析一个大型临床试验数据库(约8000名患者、118000次患者就诊以及超过35000次磁共振成像扫描),报告了一种基于数据驱动的MS疾病进展分类方法。四个维度定义了MS疾病状态:身体残疾、脑损伤、复发和亚临床疾病活动。早期/轻度/进展期(EME)MS和晚期MS代表了疾病严重程度谱的两个极点。EME MS患者表现出有限的临床损害和轻微的脑损伤。向晚期MS的转变是通过炎症状态下脑损伤的累积发生的,无论有无伴随症状。晚期MS的特征是中度至高残疾水平、放射学疾病负担以及与复发无关的疾病进展风险,几乎没有回到早期MS状态的可能性。我们在一个独立的临床试验数据库和一个真实世界队列中验证了这些结果,这些研究对象总计超过4000名MS患者。我们的研究结果支持将MS视为一种疾病连续体。我们提出了一种简化的疾病分类方法,以提供对该疾病的统一理解,改善患者管理,并提高药物研发的效率和精准度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验